GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • La Vergne :Royal Society of Chemistry, The,  (1)
  • 1
    Online Resource
    Online Resource
    La Vergne :Royal Society of Chemistry, The,
    Keywords: Protein folding. ; Peptides. ; Electronic books.
    Description / Table of Contents: With contributions from experts in the field, this book provides a comprehensive overview of the oxidative folding of cysteine-rich peptides.
    Type of Medium: Online Resource
    Pages: 1 online resource (452 pages)
    Edition: 1st ed.
    ISBN: 9781847559265
    Series Statement: Issn Series
    DDC: 572.633
    Language: English
    Note: Oxidative Folding of Peptides and Proteins -- Contents -- Chapter 1 Oxidative Folding of Proteins in vivo -- Chapter 1.1 Thioredoxins and the Regulation of Redox Conditions in Prokaryotes -- 1.1.1 The Thioredoxin Family of Proteins -- 1.1.1.1 The Thioredoxin Fold -- 1.1.1.2 Thioredoxins and the Thioredoxin System -- 1.1.1.3 Glutaredoxins and the Glutaredoxin System -- 1.1.1.4 NrdH and Other Related Proteins -- 1.1.2 Functions of Thioredoxin and Glutaredoxin -- 1.1.2.1 Regulation of Redox Conditions -- 1.1.2.2 Regulation of Metabolic Enzymes -- 1.1.3 Thioredoxins, Glutaredoxins and Protein Folding -- 1.1.3.1 Regulation of Protein Folding via Electrons Provided by Thioredoxins and Glutaredoxins -- 1.1.3.2 Thioredoxins and Glutaredoxins Acting as Protein Disulfide Isomerases or Molecular Chaperones -- 1.1.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 1.2 Disulfide-bond Formation and Isomerization in Prokaryotes -- 1.2.1 Introduction -- 1.2.2 Disulfide-bond Formation -- 1.2.2.1 The Periplasmic Dithiol Oxidase DsbA -- 1.2.2.2 DsbB -- 1.2.3 Disulfide-bond Isomerization -- 1.2.3.1 Disulfide-bond Isomerase DsbC -- 1.2.3.2 Reactivation of DsbC: The Inner Membrane Electron Transporter DsbD -- 1.2.3.3 DsbG, a Structural Homolog of DsbC with Unknown Function -- 1.2.3.4 The Cytochrome c Maturation Factor CcmG is a DsbD Substrate -- 1.2.4 Coexistence of the Oxidative Disulfide-bond Formation and the Reductive Disulfide Isomerization Pathways -- 1.2.5 Concluding Remarks -- Acknowledgements -- References -- Chapter 1.3 The Periplasm of E. coli - Oxidative Folding of Recombinant Proteins -- 1.3.1 Escherichia coli as Host for the Production of Recombinant Proteins - Benefits and Drawbacks -- 1.3.2 Cytoplasm, Periplasm or Cultivation Media - Where to Direct the Target Protein? -- 1.3.3 Physiology and Properties of the Periplasm. , 1.3.4 The Periplasm - How to Get There? -- 1.3.4.1 Signal Sequences -- 1.3.4.2 Secretion of Unfolded Proteins via the Sec Pathway -- 1.3.4.3 Secretion of Folded Proteins via the Tat Pathway -- 1.3.5 Biotechnological Application - the Periplasm as Production Compartment for Recombinant Proteins -- 1.3.5.1 Production of Antibodies and Antibody Fragments -- 1.3.5.2 Secretory Production of Human Proinsulin -- 1.3.5.3 Production of Other Therapeutic Proteins -- 1.3.6 Conclusions and Future Directions -- Acknowledgements -- References -- Chapter 1.4 Oxidative Protein Folding in Mitochondria -- 1.4.1 Introduction -- 1.4.2 Disulfide Bonds in the IMS of Mitochondria -- 1.4.3 Protein Import into the IMS by Oxidative Protein Folding -- 1.4.4 The Redox-dependent Import Receptor Mia40 -- 1.4.5 The FAD-dependent Sulfhydryl Oxidase Erv1 -- 1.4.6 The Mia40-Erv1 Disulfide Relay System -- 1.4.7 Cytochrome c Links the Disulfide Relay System to the Respiratory Chain of Mitochondria -- 1.4.8 Oxidative Protein Folding Drives Import of Sod1 -- 1.4.9 Conclusion and Perspectives -- Acknowledgements -- References -- Chapter 1.5 Oxidative Folding in the Endoplasmic Reticulum -- 1.5.1 Introduction -- 1.5.2 Biochemistry of Disulfide-bond Formation -- 1.5.3 Folding Environment of the ER -- 1.5.4 Thiol Disulfide Oxidoreductase Family -- 1.5.5 Disulfide-bond Oxidation Pathway -- 1.5.5.1 Protein Disulfide Isomerase (PDI) -- 1.5.5.2 Oxidation by Ero1 -- 1.5.5.3 Oxidation by QSOX -- 1.5.6 Disulfide-bond Reduction Pathway -- 1.5.6.1 The Role of Glutathione in the ER -- 1.5.7 Maintaining the Redox Balance of the ER -- 1.5.8 Substrate Recognition by PDI and its Homologs -- 1.5.9 Conclusion -- References -- Chapter 1.6 The Ero1 Sulfhydryl Oxidase and the Oxidizing Potential of the Endoplasmic Reticulum -- 1.6.1 Introduction. , 1.6.2 Mechanism for Generation and Transfer of Disulfides by Ero1 -- 1.6.2.1 A Route for Intramolecular Electron Transfer Supported by the Ero1 Structure -- 1.6.2.2 Oxidation of PDI by Ero1 -- 1.6.2.3 Comparison of Ero1 with the DsbB Intramembrane Sulfhydryl Oxidoreductase of Bacteria -- 1.6.2.4 Comparison of Ero1 to Erv Sulfhydryl Oxidases -- 1.6.3 Destination of Reducing Equivalents Derived from Cysteine Thiol Oxidation by Ero1 -- 1.6.4 Regulation of Ero1 and the Maintenance of Redox Homeostasis in the ER -- 1.6.5 Ero1 Orthologs -- 1.6.6 Summary -- References -- Chapter 1.7 Eukaryotic Protein Disulfide-isomerases and their Potential in the Production of Disulfide-bonded Protein Products: What We Need to Know but Do Not! -- 1.7.1 Introduction -- 1.7.2 Evidence that PDI is Rate or Yield Limiting in the Production of High-value Proteins -- 1.7.2.1 Oxidative Folding in vitro -- 1.7.2.2 Optimizing Production of Disulfide-bonded Proteins in Escherichia coli -- 1.7.2.3 Optimizing Production of Disulfide-bonded Proteins in Saccharomyces cerevisiae -- 1.7.2.4 Optimizing Production of Disulfide-bonded Proteins in Mammalian and Insect Cells -- 1.7.3 What Limits our Ability to Enhance the Usefulness of PDI in the Production of High-value Proteins? -- 1.7.3.1 Functional Organization of Chaperones and Folding Factors in the ER -- 1.7.3.2 Functional Significance of the Existence of Multiple Members of the PDI Family -- 1.7.3.3 Functional Organization of the Flow of Redox Equivalents to Newly Synthesized Proteins in the ER: Linear Electron Transfer Chain or Network? -- 1.7.3.4 Dynamic Description of the Action of PDI on Protein Substrates -- Acknowledgements -- References -- Chapter 1.8 Cellular Responses to Oxidative Stress -- 1.8.1 Oxidative Stress: An Imbalance in Favor of Pro-oxidants -- 1.8.1.1 Reactive Oxygen Species. , 1.8.1.2 The Deleterious Effects of Oxidative Stress -- 1.8.1.3 Cellular Responses to Oxidative Stress -- 1.8.1.4 Cysteines: The Building Blocks of ROS-sensing Nano-switches -- 1.8.2 OxyR: A Redox-regulated Transcription Factor -- 1.8.2.1 Discovery of an H2O2-response Regulator in E. coli -- 1.8.2.2 The OxyR Regulon -- 1.8.2.3 Redox Regulation of OxyR's Function -- 1.8.2.4 Biotechnological Application of OxyR -- 1.8.3 Hsp33: A Chaperone Specialized for Oxidative Stress Protection -- 1.8.3.1 The Redox-regulated Chaperone Holdase Hsp33 -- 1.8.3.2 Mechanism of Hsp33's Redox Regulation -- 1.8.3.3 Hsp33: Central Member of a Multichaperone Network -- 1.8.4 Oxidative Stress and Redox Regulation: Turning Lemons into Lemonade -- References -- Chapter 2 Oxidative Folding of Proteins in vitro -- Chapter 2.1 The Role of Disulfide Bonds in Protein Folding and Stability -- 2.1.1 Introduction -- 2.1.2 Stabilization of Proteins by Disulfide Bonds -- 2.1.3 Disulfide Bonds in Protein Folding Reactions -- 2.1.4 Conclusions -- References -- Chapter 2.2 Strategies for the Oxidative in vitro Refolding of Disulfide-bridge-containing Proteins -- 2.2.1 Introduction -- 2.2.2 Chemical Systems for the in vitro Formation of Disulfide Bridges -- 2.2.2.1 Transition Metal-catalyzed Air Oxidation -- 2.2.2.2 Thiol-Disulfide Exchange Systems -- 2.2.2.3 Mixed Disulfides -- 2.2.2.4 Enzymatic Catalysis of Disulfide-bond Formation in vitro -- 2.2.3 Alternative Approaches to Oxidative in vitro Folding -- 2.2.3.1 Dithiols -- 2.2.3.2 Aromatic Thiols -- 2.2.3.3 Matrix-assisted Oxidative Refolding -- 2.2.3.4 Other Oxidizing Compounds -- 2.2.3.5 Electrochemical Oxidation -- 2.2.4 Chemical Modification of Cysteine Residues in vitro -- 2.2.5 Cell-free Expression Systems -- 2.2.6 Conclusions -- References. , Chapter 3 Redox Potentials of Cysteine Residues in Peptides and Proteins: Methods for their Determination -- 3.1 Introduction -- 3.2 Formation of Disulfide Bonds by Thiol-disulfide Exchange -- 3.3 Redox Potentials of Mixed Disulfide Bonds -- 3.4 Redox Potentials of Intramolecular Disulfide Bonds -- 3.5 Measurement of Equilibrium Constants for Thiol-disulfide Exchange -- 3.6 Reference Redox Couples -- 3.7 The GSH/GSSG Reference Redox Couple -- 3.8 Determination of Redox Potentials with GSH/GSSG1 Redox Buffers: an Example -- 3.9 Determination of Redox Potentials by the Direct Protein-Protein Equilibration Method: an Example -- References -- Chapter 4 Engineered Disulfide Bonds for Protein Design -- 4.1 Introduction -- 4.2 Helices -- 4.2.1 Disulfide-stabilized Helices -- 4.2.2 Helical Bundles -- 4.3 β-Turns -- 4.4 β-Sheets -- 4.4.1 β-Hairpins -- 4.4.2 Multi-stranded β-Sheets -- 4.5 Conclusions -- Acknowledgements -- References -- Chapter 5 Selenocysteine as a Probe of Oxidative Protein Folding -- 5.1 Introduction -- 5.2 Incorporation of Selenocysteine into Proteins -- 5.2.1 Codon Suppression -- 5.2.2 Codon Reassignment -- 5.2.3 Post-translational Modification -- 5.2.4 Peptide Synthesis -- 5.3 Oxidative Protein Folding -- 5.3.1 Selenium as a Folding Probe -- 5.3.2 Selenium as a Folding Catalyst -- 5.4 Perspectives -- References -- Chapter 6 Oxidative Folding of Peptides in vitro -- Chapter 6.1 Oxidative Folding of Single-stranded Disulfide-rich Peptides -- 6.1.1 Introduction -- 6.1.1.1 Molecular Diversity of Disulfide-rich Peptides -- 6.1.1.2 Oxidative Folding Problem -- 6.1.1.3 Scope of the Chapter -- 6.1.2 Mechanisms of in vitro Oxidative Folding -- 6.1.2.1 Thiol/Disulfide Exchange Reactions in Peptides -- 6.1.2.2 Cysteine Patterns and Loop Sizes -- 6.1.2.3 Amino Acid Sequences and Non-covalent Interactions. , 6.1.2.4 A Case Study - Folding of ω-Conotoxin MVIIA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...