GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 8425-8434, doi:10.1029/2018GL078904.
    Description: Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.
    Description: National Natural Science Foundation of China Grant Numbers: 41520104009, 41521064; MOE; JSPS Grant Numbers: A‐1003, 2‐1304, B‐0904, B‐0903, 22310014, 23651021, 25550020; NIES; SNSF Grant Number: 200021_140850
    Keywords: Radiocarbon ; Lateral particle transport time ; Organic carbon aging ; Continental shelf sediments ; Grain size fractions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2784–2799, doi:10.1002/2014JC010643.
    Description: To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (〈100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.
    Description: This research was funded by the NSF Division of Polar Programs (ARC-0909377), the Ocean and Climate Change Institute of Woods Hole Oceanographic Institution, and ETH Zürich. J.H. and M.K. were partly supported by the National Research Foundation of Korea grant funded by the Korean Government (2011–0013629).
    Keywords: Canada Basin ; Particulate organic carbon ; Lateral supply ; Radiocarbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...