GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature Communications, 8 (1). Art.No. 1709 (2017).
    Publikationsdatum: 2020-06-18
    Beschreibung: Understanding mollusk calcification sensitivity to ocean acidification (OA) requires a better knowledge of calcification mechanisms. Especially in rapidly calcifying larval stages, mechanisms of shell formation are largely unexplored—yet these are the most vulnerable life stages. Here we find rapid generation of crystalline shell material in mussel larvae. We find no evidence for intracellular CaCO3 formation, indicating that mineral formation could be constrained to the calcifying space beneath the shell. Using microelectrodes we show that larvae can increase pH and [CO32−] beneath the growing shell, leading to a ~1.5-fold elevation in calcium carbonate saturation state (Ωarag). Larvae exposed to OA exhibit a drop in pH, [CO32−] and Ωarag at the site of calcification, which correlates with decreased shell growth, and, eventually, shell dissolution. Our findings help explain why bivalve larvae can form shells under moderate acidification scenarios and provide a direct link between ocean carbonate chemistry and larval calcification rate.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-06-18
    Beschreibung: Carbon capture and storage is promoted as a mitigation method counteracting the increase of atmospheric CO2 levels. However, at this stage, environmental consequences of potential CO2 leakage from sub-seabed storage sites are still largely unknown. In a 3-month-long mesocosm experiment, this study assessed the impact of elevated pCO2 levels (1,500 to 24,400 μatm) on Cerastoderma edule dominated benthic communities from the Baltic Sea. Mortality of C. edule was significantly increased in the highest treatment (24,400 μatm) and exceeded 50%. Furthermore, mortality of small size classes (0–1 cm) was significantly increased in treatment levels ≥6,600 μatm. First signs of external shell dissolution became visible at ≥1,500 μatm, holes were observed at 〉6,600 μatm. C. edule body condition decreased significantly at all treatment levels (1,500–24,400 μatm). Dominant meiofauna taxa remained unaffected in abundance. Densities of calcifying meiofauna taxa (i.e. Gastropoda and Ostracoda) decreased in high CO2 treatments (〉6,600 μatm), while the non - calcifying Gastrotricha significantly increased in abundance at 24,400 μatm. In addition, microbial community composition was altered at the highest pCO2 level. We conclude that strong CO2 leakage can alter benthic infauna community composition at multiple trophic levels, likely due to high mortality of the dominant macrofauna species C. edule.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-09-23
    Beschreibung: The impact of seawater acidification on calcifying organisms varies at the species level. If the impact differs between predator and prey in strength and/or sign, trophic interactions may be altered. In the present study, we investigated the impact of 3 different seawater pCO2 levels (650, 1250 and 3500 µatm) on the acid–base status or the growth of 2 predatory species, the common sea star Asterias rubens and the shore crab Carcinus maenas, and tested whether the quantity or size of prey consumed is affected. We exposed both the predators and their prey, the blue mussel Mytilus edulis, over a time span of 10 wk and subsequently performed feeding experiments. Intermediate acidification levels had no significant effect on growth or consumption in either predator species. The highest acidification level reduced feeding and growth rates in sea stars by 56%, while in crabs a 41% decrease in consumption rates of mussels could be demonstrated over the 10 wk experimental period but not in the subsequent shorter feeding assays. Because only a few crabs moulted in the experiment, acidification effects on crab growth could not be investigated. Active extracellular pH compensation by means of bicarbonate accumulation was observed in C. maenas, whereas the coelomic fluid pH in A. rubens remained uncompensated. Acidification did not provoke a measurable shift in prey size preferred by either predator. Mussels exposed to elevated pCO2 were preferred by previously untreated A. rubens but not by C. maenas. The observed effects on species interactions were weak even at the high acidification levels expected in the future in marginal marine habitats such as the Baltic Sea. Our results indicate that when stress effects are similar (and weak) on interacting species, biotic interactions may remain unaffected.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 373 . pp. 303-309.
    Publikationsdatum: 2019-09-23
    Beschreibung: Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO(2)). During a 6 wk period, juvenile S. officinalis maintained calcification under similar to 4000 and similar to 6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4%, body mass daily and increased the mass of their calcified cuttlebone by over 500 %. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-08-28
    Beschreibung: Ocean acidification has the potential to affect growth and calcification of benthic marine invertebrates, particularly during their early life history. We exposed field-collected juveniles of Asterias rubens from Kiel Fjord (western Baltic Sea) to 3 seawater CO2 partial pressure (pCO2) levels (ranging from around 650 to 3500 µatm) in a long-term (39 wk) and a short-term (6 wk) experiment. In both experiments, survival and calcification were not affected by elevated pCO2. However, feeding rates decreased strongly with increasing pCO2, while aerobic metabolism and NH4+ excretion were not significantly affected by CO2 exposure. Consequently, high pCO2 reduced the scope for growth in A. rubens. Growth rates decreased substantially with increasing pCO2 and were reduced even at pCO2 levels occurring in the habitat today (e.g. during upwelling events). Sea stars were not able to acclimate to higher pCO2, and growth performance did not recover during the long-term experiment. Therefore, the top-down control exerted by this keystone species may be diminished during periods of high environmental pCO2 that already occur occasionally and will be even higher in the future. However, some individuals were able to grow at high rates even at high pCO2, indicating potential for rapid adaption. The selection of adapted specimens of A. rubens in this seasonally acidified habitat may lead to higher CO2 tolerance in adult sea stars of this population compared to the juvenile stage. Future studies need to address the synergistic effects of multiple stressors such as acidification, warming and reduced salinity, which will simultaneously impact the performance of sea stars in this habitat.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 373 . pp. 303-309.
    Publikationsdatum: 2019-09-24
    Beschreibung: Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...