GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2016-05-26
    Beschreibung: The role of transparent exopolymer particles (TEP) and dissolved organic carbon (DOC) for organic carbon partitioning under different CO2 conditions was examined during a mesocosm experiment with the coccolithophorid Emiliania huxleyi. We designed 9 outdoor enclosures (similar to11 m(3)) to simulate CO2 concentrations of estimated 'Year 2100' (similar to710 ppm CO2), 'present' (similar to410 ppm CO2) and 'glacial' (similar to190 ppm CO2) environments, and fertilized these with nitrate and phosphate to favor bloom development. Our results showed fundamentally different TEP and DOC dynamics during the bloom. In all mesocosms, TEP concentration increased after nutrient exhaustion and accumulated steadily until the end of the study. TEP concentration was closely related to the abundance of E. huxleyi and accounted for an increase in POC concentration of 35 2 % after the onset of nutrient limitation. The production of TEP normalized to the cell Abundance of E. huxleyi was highest in the Year 2100 treatment. In contrast, DOC concentration exhibited considerable short-term fluctuations throughout the study. In all mesocosms, DOC was neither related to the abundance of E. huxleyi nor to TEP concentration. A statistically significant effect of the CO2 treatment on DOC concentration was not determined. However, during the course of the bloom, DOC concentration increased in 2 of the 3 Year 2100 mesocosms and in 1 of the present mesocosms, but in none of the glacial mesocosms. It is suggested that the observed differences between TEP and DOC were determined by their different bioavailability and that a rapid response of the microbial food web may have obscured CO2 effects on DOC production by autotrophic cells.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-05-30
    Beschreibung: Chromophoric dissolved organic matter (CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM) pool. Recent evidence pointed towards a microbial source of CDOM in the aquatic environment and led to the proposal that phytoplankton is not a direct source of CDOM, but that heterotrophic bacteria, through reprocessing of DOM of algal origin, are an important source of CDOM. In a recent experiment designed at looking at the effects of elevated pCO2 on blooms of the coccolithophorid alga Emiliania huxleyi, we found that despite the 3 different pCO2 levels tested (190, 414 and 714 ppm), no differences were observed in accumulation of CDOM over the 20 d of incubation. Unlike previous mesocosm experiments where relationships between CDOM accumulation and bacterial abundance have been observed, none was observed here. These results provide some new insights into the apparent lack of effect of pCO2 on CDOM accumulation in surface waters, and question the previously proposed mechanisms and rates of CDOM production in natural phytoplankton blooms.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 193 . pp. 295-303.
    Publikationsdatum: 2018-05-09
    Beschreibung: The large temporal and spatial variability in carbon isotope fractionation of marine phytoplankton (ε p) is thought to reflect differences in environmental conditions. Meaningful interpretation of this variability requires an understanding of the processes responsible for phytoplankton isotope fractionation. While numerous factors have been suggested to potentially influence ε p, recent theoretical and experimental evidence has emphasized the primary role of phytoplankton growth rate (µ) and CO2 concentration ([CO2aq]) in controlling ε p. Experimental examination of the relationship of ε p with µ and [CO2aq] in studies using different experimental approaches, however, has yielded inconsistent results. Here we directly compare new and previously published data on ε p as a function of CO2 concentration and growth rate for the marine diatom Phaeodactylum tricornutum. When grown under nitrogen-deficient conditions (nitrate-limited chemostat), ε p of P. tricornutum decreases with increasing growth rate. In contrast, under N-replete conditions ε p values are considerably lower at comparable growth rates and CO2 concentrations and are largely insensitive to a 3-fold increase in growth rate due to increasing photon flux density. In both experimental approaches, ε p shows a relatively small CO2 sensitivity in the range of CO2 concentrations naturally occurring in the ocean (8 to 25 µmol kg-1). Below ca 5 µmol CO2 kg-1, a strong decline in ε p with decreasing [CO2aq] is observed. The apparent difference in ε p responses between nitrate-limited and light-controlled cultures of P. tricornutum suggests a principal difference in carbon acquisition for different growth-rate-limiting resources. A mechanistic explanation is proposed and potential implications for the interpretation of phytoplankton carbon isotope fractionation are discussed.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...