GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Institute of Electrical and Electronics Engineers  (2)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Dosso, S. E., Eleftherakis, D., & Chapman, N. R. Trans-dimensional inversion of modal dispersion data on the New England Mud Patch. IEEE Journal of Oceanic Engineering, 45(1), (2020): 116-130, doi:10.1109/JOE.2019.2896389.
    Beschreibung: This paper presents single receiver geoacoustic inversion of two independent data sets recorded during the 2017 seabed characterization experiment on the New England Mud Patch. In the experimental area, the water depth is around 70 m, and the seabed is characterized by an upper layer of fine grained sediments with clay (i.e., mud). The first data set considered in this paper is a combustive sound source signal, and the second is a chirp emitted by a J15 source. These two data sets provide differing information on the geoacoustic properties of the seabed, as a result of their differing frequency content, and the dispersion properties of the environment. For both data sets, source/receiver range is about 7 km, and modal time-frequency dispersion curves are estimated using warping. Estimated dispersion curves are then used as input data for a Bayesian trans-dimensional inversion algorithm. Subbottom layering and geoacoustic parameters (sound speed and density) are thus inferred from the data. This paper highlights important properties of the mud, consistent with independent in situ measurements. It also demonstrates how information content differs for two data sets collected on reciprocal tracks, but with different acoustic sources and modal content.
    Beschreibung: 10.13039/100000006-Office of Naval Research 10.13039/100007297-Office of Naval Research Global
    Schlagwort(e): Dispersion ; Cascading style sheets ; Sea measurements ; Receivers ; Chirp ; Sediments ; Uncertainty
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Institute of Electrical and Electronics Engineers
    Publikationsdatum: 2022-05-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Pecknold, S. P., Hines, P. C., & Chapman, N. R. An experimental benchmark for geoacoustic inversion methods. IEEE Journal of Oceanic Engineering, 46(1), (2021): 261-282, https://doi.org/10.1109/JOE.2019.2960879.
    Beschreibung: Over the past 25 years, there has been significant research activity in development and application of methods for inverting acoustical field data to estimate parameters of geoacoustic models of the ocean bottom. Although the performance of various geoacoustic inversion methods has been benchmarked on simulated data, their performance with experimental data remains an open question. This article constitutes the first attempt of an experimental benchmark of geoacoustic inversion methods. To do so, the article focuses on data from experiments carried out at a common site during the Shallow Water 2006 (SW06) experiment. The contribution of the article is twofold. First, the article provides an overview of experimental inversion methods and results obtained with SW06 data. Second, the article proposes and uses quantitative metrics to assess the experimental performance of inversion methods. From a sonar performance point of view, the benchmark shows that no particular geoacoustic inversion method is definitely better than any other of the ones that were tested. All the inversion methods generated adequate sound-speed profiles, but only a few methods estimated attenuation and density. Also, acoustical field prediction performance drastically reduces with range for all geoacoustic models, and this performance loss dominates over intermodel variability. Overall, the benchmark covers the two main objectives of geoacoustic inversion: obtaining geophysical information about the seabed, and/or predicting acoustic propagation in a given area.
    Beschreibung: Funding Agency: U.S. Office of Naval Research; Ocean Acoustics;
    Schlagwort(e): Oceans ; Benchmark testing ; Geoacoustic inversion ; Data models ; Sediments ; Conferences
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...