GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AGU
    In:  Journal of Geophysical Research: Oceans, 118 (4). pp. 1658-1672.
    Publikationsdatum: 2020-07-23
    Beschreibung: A monthly, isopycnal/mixed-layer ocean climatology (MIMOC), global from 0 to 1950 dbar, is compared with other monthly ocean climatologies. All available quality-controlled profiles of temperature (T) and salinity (S) versus pressure (P) collected by conductivity-temperature-depth (CTD) instruments from the Argo Program, Ice-Tethered Profilers, and archived in the World Ocean Database are used. MIMOC provides maps of mixed layer properties (conservative temperature, Θ, absolute salinity, SA, and maximum P) as well as maps of interior ocean properties (Θ, SA, and P) to 1950 dbar on isopycnal surfaces. A third product merges the two onto a pressure grid spanning the upper 1950 dbar, adding more familiar potential temperature (θ) and practical salinity (S) maps. All maps are at monthly 0.5° × 0.5° resolution, spanning from 80°S to 90°N. Objective mapping routines used and described here incorporate an isobath-following component using a “Fast Marching” algorithm, as well as front-sharpening components in both the mixed layer and on interior isopycnals. Recent data are emphasized in the mapping. The goal is to compute a climatology that looks as much as possible like synoptic surveys sampled circa 2007–2011 during all phases of the seasonal cycle, minimizing transient eddy and wave signatures. MIMOC preserves a surface mixed layer, minimizes both diapycnal and isopycnal smoothing of θ-S, as well as preserves density structure in the vertical (pycnoclines and pycnostads) and the horizontal (fronts and their associated currents). It is statically stable and resolves water mass features, fronts, and currents with a high level of detail and fidelity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    IEEE
    In:  [Paper] In: Autonomous Underwater Vehicles (AUV), 2012 IEEE/OES, 24.-27.09.2012, Southampton, UK . 2012 IEEE/OES Autonomous Underwater Vehicles (AUV) ; pp. 1-7 .
    Publikationsdatum: 2014-12-10
    Beschreibung: Over the last couple of decades, autonomous underwater vehicles have become a powerful tool in the investigation of biological, chemical and physical oceanography. Not only do they complement existing technologies, they open up new avenues of investigation through their specific capabilities. For AUVs to benefit from the same success other long term monitoring platforms have had (moorings, ARGO), it is critical to understand their limits in both monitoring and process studies. We present results from several Seaglider deployments by the University of East Anglia where Seagliders were pushed to the limit of their abilities. Comparison of missions in extreme conditions at the limits of their depth range (70 to 1000 m) and battery life shows a need for tailored survey design and flight parameters in order to maximise mission duration, control over the Seaglider and most efficient science sampling. In particular, we look at post-processing of Seaglider data and present aspects of a new MATLAB toolbox which greatly improves on timestamp correction of Seaglider data by accounting for errors introduced by using a single thread processor.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...