GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Mediators of Inflammation, Hindawi Limited, Vol. 2013 ( 2013), p. 1-8
    Abstract: As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity.
    Type of Medium: Online Resource
    ISSN: 0962-9351 , 1466-1861
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2013
    detail.hit.zdb_id: 2008065-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Chemical Engineering, Hindawi Limited, Vol. 2022 ( 2022-3-24), p. 1-15
    Abstract: The aviation sector has become a considerable market for biofuels since they come from renewable sources and have characteristics that help to reduce pollution. Hydrocarbons production from vegetable oils and their derivates for use in diesel and aviation kerosene are a possible alternative route to reduce fossil fuels. With that in mind, this article aimed to develop nickel catalysts supported on γ-Al2O3, Nb2O5, and zeolites to submit them to the hydroprocessing of vegetable oils and derivatives in the production of hydrocarbons. With soy ester, reactions with the Ni/Al2O3 and Ni/Nb2O5 catalyst showed selectivity of 41.2 and 16.5%, respectively, at a temperature of 300°C and a reaction time of 7 h. Under the same conditions, hydroprocessing reactions for the soybean ester using Ni/Beta and Ni/HY zeolites promoted more excellent conversion (between 80 and 99%) than oxide catalysts and selectivity between 30 and 70% for Ni/Beta and Ni/HY, correspondently. Besides, zeolite catalysts showed high conversion at the higher temperature (340°C) and time (9 h), reaching 100% conversion and hydrocarbons selectivity of 76.8 and 61.9% for zeolite Beta and HY, respectively. Changing the raw material to fatty acids made it possible to notice that zeolite catalysts showed high selectivity reaching 100%. Given the excellent performance of catalysts in hydroprocessing reactions, it is possible to consider them a promising alternative route since they can reduce the production by applying transition metal as a catalyst instead of noble metals used in the industry.
    Type of Medium: Online Resource
    ISSN: 1687-8078 , 1687-806X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2448899-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...