GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Geophysical Research Abstracts Vol. 20, EGU2018-7790, 2018  (1)
  • Wiley  (1)
Document type
  • Articles  (2)
Publisher
Years
  • 1
    Publication Date: 2019-08-13
    Description: The importance of macrobenthos in benthic‐pelagic coupling and early diagenesis of organic carbon (OC) has long been recognized but has not been quantified at a regional scale. By using the southern North Sea as an exemplary area we present a modelling attempt to quantify the budget of total organic carbon (TOC) reworked by macrobenthos in seafloor surface sediments. Vertical profiles in sediments collected in the field indicate a significant but nonlinear correlation between TOC and macrobenthic biomass. A mechanistic model is used to resolve the bi‐directional interaction between TOC and macrobenthos. A novelty of this model is that bioturbation is resolved dynamically depending on variations in local food resource and macrobenthic biomass. The model is coupled to 3D hydrodynamic‐biogeochemical simulations to hindcast the mutual dependence between sedimentary TOC and macrobenthos from 1948 to 2015. Agreement with field data reveals a satisfactory model performance. Our simulations show that the preservation of TOC in the North Sea sediments is not only determined by pelagic conditions (hydrodynamic regime and primary production) but also by the vertical distribution of TOC, bioturbation intensity, and the vertical positioning of macrobenthos. Macrobenthos annually ingest 20%–35% and in addition vertically diffuse 11%–22% of the total budget of TOC in the upper‐most 30 cm sediments in the southern North Sea. This result indicates a central role of benthic animals in modulating the OC cycling at the sediment‐water interface of continental margins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geophysical Research Abstracts Vol. 20, EGU2018-7790, 2018
    In:  EPIC3EGU General Assembly 2018, Vienna, 2018-04-07-2018-04-13Geophysical Research Abstracts Vol. 20, EGU2018-7790, 2018
    Publication Date: 2018-05-25
    Description: Field data collected for the North Sea indicate a prominent seasonal variation in the vertical distribution of total organic carbon (TOC) and macrobenthic biomass in sediments. The vertical TOC profiles classify into three modes, with maximum at surface, middle and deep part of sediments, respectively. We here present a mechanistic model to quantify, for the first time, the dynamic interaction between sedimentary TOC and benthic fauna. The major model principles include that (i) the vertical distribution of macrobenthic biomass is a trade-off between nutritional benefit (quantity and quality of TOC) and the costs of burial (respiration) and mortality, and (ii) the vertical transport of TOC is in turn modulated by macrobenthos through bioturbation. A novelty of our model is that bioturbation is resolved dynamically depending on variation of local food resources and macrobenthic biomass. This allows capturing of the benthic response to both depositional and erosional conditions and improving estimates of the material exchange flux at the sediment-water interface. The coupling of the TOC-benthos model with 3D hydrodynamic-ecological simulations reveals that the three profile modes of sedimentary TOC (in both quantify and quality) can be explained as a combined response to pelagic conditions (shear stress and primary production) and the synergy between bioturbation, vertical redistribution of higher quality TOC and vertical positioning of benthic organisms. A model reconstruction of the benthic status in the North Sea from 1950s to 2010s indicates that despite a relatively stable pattern at decadal and regional scales, significant variations exist at smaller scales characterized by seasons and local areas. In addition, inter-annual and multi-year cycle-like variations are also prominent especially in coastal areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...