GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of London  (3)
Document type
Publisher
Years
  • 1
    Publication Date: 2011-05-01
    Description: Exploration well 50/26b-6 in the UK Southern North Sea discovered a trap containing a gas-bearing Rotliegend Group (Leman Sandstone Formation) reservoir which was a major surprise at the time of drilling in that its gas composition was approximately 50% CO2 (with 9% N2 and the remainder methane). Christened the Fizzy Discovery', the accumulation was appraised by well 50/26b-8. Subsequently, another CO2-rich discovery (Oak) was made along-strike in nearby block 54/1b. Column heights at the well locations are of the order of a few tens of metres, but at the Fizzy Discovery the column height at the trap crest is estimated to be over 200 m. Interpretation of a high fidelity PSTM 3D seismic dataset has been constrained by 33 exploration wells allowing fault geometries and stratigraphic offsets to be determined with confidence. Despite late-stage (Late Cretaceous) structural inversion, the net boundary-fault offset is sufficient in both the Fizzy and Oak discoveries to almost breach the Zechstein Group evaporite super-seal, and the CO2-bearing Rotliegend Group in the footwall is now juxtaposed against hanging wall sediments of the uppermost Zechstein Group. Hence, these Zechstein Group units evidently act as a robust long-term side-seal for the carbon dioxide column. The Fizzy and Oak accumulations are noteworthy in providing a natural demonstration of top seal and fault side-seal integrity for carbon dioxide in a subsurface reservoir, that has remained intact over a geological timescale in what is otherwise a prolific methane-rich reservoir play fairway.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-01
    Description: Fault seal plays a critical part in hydrocarbon traps, and the same will be true for CO2 storage. The standard workflow for prediction of capillary seal of hydrocarbons can be readily adapted to prediction of CO2 seal since the fluid properties of CO2 at reservoir temperatures and pressures are within the range shown by hydrocarbons. The workflow is applied in a feasibility study into the proposed CO2 storage in the Johansen Formation of the Troll Field. Computation of Shale Gouge Ratio (SGR) over the fault surfaces, in combination with juxtaposition diagrams, was used to estimate the sealing potential of faults cutting the Johansen Formation. SGR values were converted to potential CO2 column heights that might be trapped at each fault. Column heights are generally less than 100 m at each fault, allowing a cross-fault migration route from the Johansen Sand via the Statfjord Formation, Cook Formation and Brent Group. Analysis of in-situ stresses suggests that the faults in the Troll Field are not close to failure and therefore up-dip leakage of CO2 is unlikely. Extremely large CO2 columns (〉300 m) would be required to change this stress stability, and across-fault capillary leakage would occur first.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-01
    Description: Fault-seal analysis in hydrocarbon exploration often involves prediction of the sealing capacity of fault rock at reservoir–reservoir juxtapositions on subsurface faults. A proxy property, such as Shale Gouge Ratio (SGR), is mapped on to the fault surface, and then SGR is either (a) calibrated by observations of known sealing faults, to define its sealing capacity (empirical approach), or (b) assumed to be equal to the composition of the fault rock, for which a database of capillary threshold pressures is available from cores (deterministic approach). The deterministic approach implicitly assumes that capillary pressures measured on centimetre-scale samples are representative of seismically mappable faults, for example that faults of intermediate SGR are equivalent to phyllosilicate framework fault rocks.This contribution builds on earlier outcrop and modelling work to suggest an alternative explanation for the observed progressive increase in sealing capacity on faults of increasing SGR. Stochastic models of disrupted shale smears display the same pattern of increasing sealing capacity as SGR increases. These models have a bimodal ‘fault rock’ composed only of sealing shale smears and non-sealing matrix and, yet, at intermediate SGR the predicted column heights are similar to those normally ascribed to intermediate composition fault rocks. The resulting ‘fault-seal envelope’ in the models is a statistical estimate of the maximum trappable column height, dependent on the random occurrence of a gap in the smeared fault surface.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...