GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (4)
Document type
Years
  • 1
    Publication Date: 2013-12-31
    Description: Antarctic subglacial highlands are where the Antarctic ice sheets first developed and the "pinning points" where retreat phases of the marine-based sectors of the ice sheet are impeded. Due to low ice velocities and limited present-day change in the ice-sheet interior, West Antarctic subglacial highlands have been overlooked for detailed study. These regions have considerable potential, however, for establishing the locations from which the West Antarctic Ice Sheet originated and grew, and its likely response to warming climates. Here, we characterize the subglacial morphology of the Ellsworth Subglacial Highlands, West Antarctica, from ground-based and aerogeophysical radio-echo sounding (RES) surveys and the Moderate-Resolution Imaging Spectroradiometer (MODIS) Mosaic of Antarctica. We document well-preserved classic landforms associated with restricted, dynamic, marine-proximal alpine glaciation, with hanging tributary valleys feeding a significant overdeepened trough (the Ellsworth Trough) cut by valley (tidewater) glaciers. Fjord-mouth threshold bars down-ice of two overdeepenings define both the northwest and southeast termini of paleo-outlet glaciers, which cut and occupied the Ellsworth Trough. Satellite imagery reveals numerous other glaciated valleys, terminating at the edge of deep former marine basins (e.g., Bentley Subglacial Trench), throughout the Ellsworth Subglacial Highlands. These geomorphic data can be used to reconstruct the glaciology of the ice masses that formed the proto–West Antarctic Ice Sheet. The landscape predates the present ice sheet and was formed by a small dynamic ice field(s), similar to those of the present-day Antarctic Peninsula, at times when the marine sections of the West Antarctic Ice Sheet were absent. The Ellsworth Subglacial Highlands represent a major seeding center of the paleo–West Antarctic Ice Sheet, and its margins represent the pinning point at which future retreat of the marine-based West Antarctic Ice Sheet would be arrested.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-04
    Description: Several recent studies predict that the West Antarctic Ice Sheet will become increasingly unstable under warmer conditions. Insights on such change can be assisted through investigations of the subglacial landscape, which contains imprints of former ice-sheet behavior. Here, we present radio-echo sounding data and satellite imagery revealing a series of ancient large sub-parallel subglacial bed channels preserved in the region between the Möller and Foundation Ice Streams, West Antarctica. We suggest that these newly recognized channels were formed by significant meltwater routed along the ice-sheet bed. The volume of water required is likely substantial and can most easily be explained by water generated at the ice surface. The Greenland Ice Sheet today exemplifies how significant seasonal surface melt can be transferred to the bed via englacial routing. For West Antarctica, the Pliocene (2.6–5.3 Ma) represents the most recent sustained period when temperatures could have been high enough to generate surface melt comparable to that of present-day Greenland. We propose, therefore, that a temperate ice sheet covered this location during Pliocene warm periods.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-22
    Description: The subglacial landscape of Princess Elizabeth Land (PEL) in East Antarctica is poorly known due to a paucity of ice thickness measurements. This is problematic given its importance for understanding ice sheet dynamics and landscape and climate evolution. To address this issue, we describe the topography beneath the ice sheet by assuming that ice surface expressions in satellite imagery relate to large-scale subglacial features. We find evidence that a large, previously undiscovered subglacial drainage network is hidden beneath the ice sheet in PEL. We interpret a discrete feature that is 140 x 20 km in plan form, and multiple narrow sinuous features that extend over a distance of ~1100 km. We hypothesize that these are tectonically controlled and relate to a large subglacial basin containing a deep-water lake in the interior of PEL linked to a series of long, deep canyons. The presence of 1-km-deep canyons is confirmed at a few localities by radio-echo sounding data, and drainage analysis suggests that these canyons will direct subglacial meltwater to the coast between the Vestfold Hills and the West Ice Shelf.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    In: Geology
    Publication Date: 2016-04-28
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...