GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America  (2)
  • 1
    In: Geosphere, Geological Society of America, Vol. 16, No. 6 ( 2020-12-01), p. 1336-1357
    Abstract: Fluid seepage along obliquely deforming plate boundaries can be an important indicator of crustal permeability and influence on fault-zone mechanics and hydrocarbon migration. The ∼850-km-long Queen Charlotte fault (QCF) is the dominant structure along the right-lateral transform boundary that separates the Pacific and North American tectonic plates offshore southeastern Alaska (USA) and western British Columbia (Canada). Indications for fluid seepage along the QCF margin include gas bubbles originating from the seafloor and imaged in the water column, chemosynthetic communities, precipitates of authigenic carbonates, mud volcanoes, and changes in the acoustic character of seismic reflection data. Cold seeps sampled in this study preferentially occur along the crests of ridgelines associated with uplift and folding and between submarine canyons that incise the continental slope strata. With carbonate stable carbon isotope (δ13C) values ranging from −46‰ to −3‰, there is evidence of both microbial and thermal degradation of organic matter of continental-margin sediments along the QCF. Both active and dormant venting on ridge crests indicate that the development of anticlines is a key feature along the QCF that facilitates both trapping and focused fluid flow. Geochemical analyses of methane-derived authigenic carbonates are evidence of fluid seepage along the QCF since the Last Glacial Maximum. These cold seeps sustain vibrant chemosynthetic communities such as clams and bacterial mats, providing further evidence of venting of reduced chemical fluids such as methane and sulfide along the QCF.
    Type of Medium: Online Resource
    ISSN: 1553-040X
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2020
    detail.hit.zdb_id: 2201816-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Geological Society of America ; 2021
    In:  Geosphere Vol. 17, No. 2 ( 2021-04-01), p. 375-388
    In: Geosphere, Geological Society of America, Vol. 17, No. 2 ( 2021-04-01), p. 375-388
    Abstract: The active Pacific margin of the Haida Gwaii and southeast Alaska has been subject to vigorous storm activity, dramatic sea-level change, and active tectonism since glacial times. Glaciation was minimal along the western shelf margin, except for large ice streams that formed glacial valleys to the shelf break between the major islands of southeast Alaska and Haida Gwaii. Upon deglaciation, sediment discharge was extensive, but it terminated quickly due to rapid glacial retreat and sea-level lowering with the development of a glacio-isostatic forebulge, coupled with eustatic lowering. Glacial sedimentation offshore ended soon after 15.0 ka. The shelf became emergent, with sea level lowering by, and possibly greater than, 175 m. The rapid transgression that followed began sometime before 12.7 ka off Haida Gwaii and 12.0 ka off southeast Alaska, and with the extreme wave-dominated environment, the unconsolidated sediment that was left on the shelf was effectively removed. Temperate carbonate sands make up the few sediment deposits presently found on the shelf. The Queen Charlotte fault, which lies just below the shelf break for most of its length, was extensively gullied during this short period of significant sediment discharge, when sediment was transported though the glacial valleys and across the narrow shelf through fluvial and submarine channels and was deposited offshore as sea level dropped. The Queen Charlotte fault became the western terminus of the glacio-isostatic forebulge, with the fault acting as a hinged flap taking up the uplift and collapse along the fault of 70+ m. This may have resulted in the development of the distinctive fault valley that presently acts as a very linear channel pathway for sediment throughout the fault system.
    Type of Medium: Online Resource
    ISSN: 1553-040X
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2021
    detail.hit.zdb_id: 2201816-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...