GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-28
    Description: EGU2011-12780 A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb 〉 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. The great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho. The rupture of this earthquake seems to have propagated down-dip of the Moho. The Moho reflection show a positive polarity, indicating that the mantle is either dry or only moderately hydrated. We observed converted energy from an intracrustal boundary at around 2 s that disappears near the coast. Further, positive polarity peaks occur that are possibly caused by the down going plate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GSL (Geological Society London)
    In:  In: Tectonic Evolution of the Eastern Black Sea and Caucasus. , ed. by Sosson, M., Stephenson, R. A. and Adamia, S. A. Special Publications Geological Society London, 428 . GSL (Geological Society London), London, pp. 199-220.
    Publication Date: 2021-05-10
    Description: The DOBRE-2 wide-angle reflection and refraction profile was acquired in June 2007 as a direct, southwestwards prolongation of the 1999 DOBREfraction’99 that crossed the Donbas Foldbelt in eastern Ukraine. It crosses the Azov Massif of the East European Craton, the Azov Sea, the Kerch Peninsula (the easternmost part of Crimea) and the northern East Black Sea Basin, thus traversing the entire Crimea–Caucasus compressional zone centred on the Kerch Peninsula. The DOBRE-2 profile recorded a mix of onshore explosive sources as well as airguns at sea. A variety of single-component recorders were used on land and ocean bottom instruments were deployed offshore and recovered by ship. The DOBRE-2 datasets were degraded by a lack of shot-point reversal at the southwestern terminus and by some poor signal registration elsewhere, in particular in the Black Sea. Nevertheless, they allowed a robust velocity model of the upper crust to be constructed along the entire profile as well as through the entire crust beneath the Azov Massif. A less well constrained model was constructed for much of the crust beneath the Azov Sea and the Kerch Peninsula. The results showed that there is a significant change in the upper crustal lithology in the northern Azov Sea, expressed in the near surface as the Main Azov Fault; this boundary can be taken as the boundary between the East European Craton and the Scythian Platform. The upper crustal rocks of the Scythian Platform in this area probably consist of metasedimentary rocks. A narrow unit as shallow as about 5 km and characterized by velocities typical of the crystalline basement bounds the metasedimentary succession on its southern margin and also marks the northern margin of the northern foredeep and the underlying successions of the Crimea–Caucasus compressional zone in the southern part of the Azov Sea. A broader and somewhat deeper basement unit (about 11 km) with an antiformal shape lies beneath the northern East Black Sea Basin and forms the southern margin of the Crimea–Caucasus compressional zone. The depth of the underlying Moho discontinuity increases from 40 km beneath the Azov Massif to 47 km beneath the Crimea–Caucasus compressional zone.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...