GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: The Tyrrhenian Basin is a region created by Neogene extensional tectonics related to slab rollback of the east-southeast–migrating Apennine subduction system, commonly believed to be actively underthrusting the Calabrian arc. A compilation of 〉12,000 km of multichannel seismic profiles, much of them recently collected or reprocessed, provided closer scrutiny and the mapping of previously undetected large compressive structures along the Tyrrhenian margin. This new finding suggests that Tyrrhenian Basin extension recently ceased. The ongoing compressional reorganization of the basin indicates a change of the regional stress field in the area, confirming that slab rollback is no longer a driving mechanism for regional kinematics, now dominated by the Africa-Eurasia lithospheric collision.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Conceptual models of magma-poor rifting are strongly based on studies of the nature of the basement in the continent-to-ocean transition of the Iberia Abyssal Plain, and suggest that exhumed mantle abuts extended continental crust. Yet, basement has only been sampled at a few sites, and its regional nature and the transition to seafloor spreading inferred from relatively low-resolution geophysical data are inadequately constrained. This uncertainty has led to a debate about the subcontinental or seafloor-spreading origin of exhumed mantle and the rift-related or oceanic nature of magmatic crust causing the magnetic J anomaly. Different interpretations change the locus of break-up by 〉100 km and lead to debate of the causative processes. We present the tomographic velocity structure along a 360-km-long seismic profile centered at the J anomaly in the Iberia Abyssal Plain. Rather than delineating an excessive outpouring of magma, the J anomaly occurs over subdued basement. Furthermore, its thin crust shows the characteristic layering of oceanic crust and is juxtaposed to exhumed mantle, marking the onset of magma-starved seafloor spreading, which yields the westward limit of an ~160-km-wide continent–ocean transition zone where continental mantle has been unroofed. This zone is profoundly asymmetric with respect to its conjugate margin, suggesting that the majority of mantle exhumation occurs off Iberia. Because the J anomaly is related to the final break-up and emplacement of oceanic crust, it neither represents synrift magmatism nor defines an isochron, and hence it poorly constrains plate tectonic reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...