GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (3)
  • AAAS (American Association for the Advancement of Science)  (2)
  • 1
    facet.materialart.
    Unknown
    AAAS (American Association for the Advancement of Science)
    In:  Science, 359 (6371). pp. 34-36.
    Publication Date: 2021-02-08
    Description: Research and regulations must be integrated to protect seafloor biota from future mining impacts Summary: As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 34 pp.
    Publication Date: 2020-11-18
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  In: RV Celtic Explorer EUROFLEETS cruise report CE12010 - ECO2@NorthSea : 20.07. – 06.08.2012, Bremerhaven - Hamburg. , ed. by Linke, P. GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, pp. 28-32.
    Publication Date: 2014-02-20
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
    In:  GEOMAR Report, N. Ser. 059 . GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 359 + Appendix (in all 802) pp.
    Publication Date: 2021-11-15
    Description: Cruise SO268 is fully integrated into the second phase of the European collaborative JPI-Oceans project MiningImpact and is designed to assess the environmental impacts of deep-sea mining of polymetallic nodules in the Clarion-Clipperton Fracture Zone (CCZ). In particular, the cruise aimed at conducting an independent scientific monitoring of the first industrial test of a pre-protoype nodule collector by the Belgian company DEME-GSR. The work includes collecting the required baseline data in the designated trial and reference sites in the Belgian and German contract areas, a quantification of the spatial and temporal spread of the produced sediment plume during the trials as well as a first assessment of the generated environmental impacts. However, during SO268 Leg 1 DEME-GSR informed us that the collector trials would not take place as scheduled due to unresolvable technical problems. Thus, we adjusted our work plan accordingly by implementing our backup plan. This involved conducting a small-scale sediment plume experiment with a small chain dredge to quantify the spatial and temporal dispersal of the suspended sediment particles, their concentration in the plume as well as the spatial footprint and thickness of the deposited sediment blanket on the seabed. Leg 1 and 2 acquired detailed environmental baseline data in the designated collector trial and reference sites as well as the site of the small-scale sediment plume experiment. The plume experiment was monitored by an array of acoustic and optical sensors and the impacted area was investigated in order to develop standards and protocols for impact assessments and recommendations for marine policy and international legislation. A more technical aim of the cruise was to test tools, technologies, and a concept for the environmental monitoring of future deep-sea mining operations. This comprised oceanographic, biological, microbiological, biogeochemical, and geologic investigations which required the deployment of a multitude of seagoing equipment, such as ROV Kiel 6000 for sampling of sediments, nodules, and benthic fauna as well as carrying out in situ measurements and experiments, and the deployment of the plume sensor array. AUV ABYSS and ROV Kiel 6000 were used for high-resolution acoustic mapping of the seafloor using mounted multibeam systems and video/photo surveys of the manganese nodule habitat. This work was accompanied by video observations with the OFOS system. Several benthic landers and moorings with acoustic and optical sensors were deployed and recovered for the measurements of physical and chemical oceanographic variables. Coring devices (i.e., box corer, gravity corer, TV-guided multiple corer, ROV-operaten push cores) were used to collect sediment samples for biological, geochemical, and microbiological analyses, and a CTD rosette water sampler, in situ pumps, and a bottom water sampler sampled the water column. In addition, recolonization experiments for nodule-associated fauna were started by deploying artificial hard substrates on the seabed of the working areas.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Future supplies of rare minerals for global industries with high-tech products may depend on deep-sea mining. However, environmental standards for seafloor integrity and recovery from environmental impacts are missing. We revisited the only midsize deep-sea disturbance and recolonization experiment carried out in 1989 in the Peru Basin nodule field to compare habitat integrity, remineralization rates, and carbon flow with undisturbed sites. Plough tracks were still visible, indicating sites where sediment was either removed or compacted. Locally, microbial activity was reduced up to fourfold in the affected areas. Microbial cell numbers were reduced by ~50% in fresh “tracks” and by 〈30% in the old tracks. Growth estimates suggest that microbially mediated biogeochemical functions need over 50 years to return to undisturbed levels. This study contributes to developing environmental standards for deep-sea mining while addressing limits to maintaining and recovering ecological integrity during large-scale nodule mining.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...