GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-3-23)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-3-23)
    Abstract: Dissolved silicate (H 4 SiO 4 ) is essential for the formation of the opaline skeletal structures of diatoms and other siliceous plankton. A fraction of particulate biogenic silica (bSi) formed in surface waters sinks to the seabed, where it either dissolves and returns to the water column or is permanently buried. Global silica budgets are still poorly constrained since data on benthic bSi cycling are lacking, especially on continental margins. This study describes benthic bSi cycling in the Skagerrak, a sedimentary depocenter for particles from the North Sea. Biogenic silica burial fluxes, benthic H 4 SiO 4 fluxes to the water column and bSi burial efficiencies are reported for nine stations by evaluating data from in-situ benthic landers and sediment cores with a diagenetic reaction-transport model. The model simulates bSi contents and H 4 SiO 4 concentrations at all sites using a novel power law to describe bSi dissolution kinetics with a small number of adjustable parameters. Our results show that, on average, 1100 mmol m -2 yr -1 of bSi rains down to the Skagerrak basin seafloor, of which 50% is released back to overlying waters, with the remainder being buried. Biogenic silica cycling in the Skagerrak is generally consistent with previously reported global trends, showing higher Si fluxes and burial efficiencies than deep-sea sites and similar values compared to other continental margins. A significant finding of this work is a molar bSi-to-organic carbon burial ratio of 0.22 in Skagerrak sediments, which is distinctively lower compared to other continental margins. We suggest that the continuous dissolution of bSi in suspended sediments transported over long distances from the North Sea leads to the apparent decoupling between bSi and organic carbon in Skagerrak sediments.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Climate Vol. 4 ( 2022-3-22)
    In: Frontiers in Climate, Frontiers Media SA, Vol. 4 ( 2022-3-22)
    Abstract: Enhanced weathering of mafic and ultra-mafic minerals has been suggested as a strategy for carbon dioxide removal (CDR) and a contribution to achieve a balance between global CO 2 sources and sinks (net zero emission). This study was designed to assess CDR by dissolution of ultramafic sand (UMS) in artificial seawater (ASW). Fine grained UMS with an olivine content of ~75% was reacted in ASW for up to 134 days at 1 bar and 21.5–23.9°C. A decline in total alkalinity (TA) was observed over the course of the experiments. This unexpected result indicates that TA removal via precipitation of cation-rich authigenic phases exceeded the production of TA induced by olivine dissolution. The TA decline was accompanied by a decrease in dissolved inorganic carbon and Ca concentrations presumably induced by CaCO 3 precipitation. Temporal changes in dissolved Si, Ca, Mg, and TA concentrations observed during the experiments were evaluated by a numerical model to identify secondary mineral phases and quantify rates of authigenic phase formation. The modeling indicates that CaCO 3 , FeOOH and a range of Mg-Si-phases were precipitated during the experiments. Chemical analysis of precipitates and reacted UMS surfaces confirmed that these authigenic phases accumulated in the batch reactors. Nickel released during olivine dissolution, a potential toxic element for certain organisms, was incorporated in the secondary phases and is thus not a suitable proxy for dissolution rates as proposed by earlier studies. The overall reaction stoichiometry derived from lab experiments was applied in a box model simulating atmospheric CO 2 uptake in a continental shelf setting induced by olivine addition. The model results indicate that CO 2 uptake is reduced by a factor of 5 due to secondary mineral formation and the buffering capacity of seawater. In comparable natural settings, olivine addition may thus be a less efficient CDR method than previously believed.
    Type of Medium: Online Resource
    ISSN: 2624-9553
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2986708-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2017
    In:  Frontiers in Marine Science Vol. 4 ( 2017-02-09)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 4 ( 2017-02-09)
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-12-21)
    Abstract: Anthropogenic activities are modifying the oceanic environment rapidly and are causing ocean warming and deoxygenation, affecting biodiversity, productivity, and biogeochemical cycling. In coastal sediments, anaerobic organic matter degradation essentially fuels the production of hydrogen sulfide and methane. The release of these compounds from sediments is detrimental for the (local) environment and entails socio-economic consequences. Therefore, it is vital to understand which microbes catalyze the re-oxidation of these compounds under environmental dynamics, thereby mitigating their release to the water column. Here we use the seasonally dynamic Boknis Eck study site (SW Baltic Sea), where bottom waters annually fall hypoxic or anoxic after the summer months, to extrapolate how the microbial community and its activity reflects rising temperatures and deoxygenation. During October 2018, hallmarked by warmer bottom water and following a hypoxic event, modeled sulfide and methane production and consumption rates are higher than in March at lower temperatures and under fully oxic bottom water conditions. The microbial populations catalyzing sulfide and methane metabolisms are found in shallower sediment zones in October 2018 than in March 2019. DNA-and RNA profiling of sediments indicate a shift from primarily organotrophic to (autotrophic) sulfide oxidizing Bacteria, respectively. Previous studies using data collected over decades demonstrate rising temperatures, decreasing eutrophication, lower primary production and thus less fresh organic matter transported to the Boknis Eck sediments. Elevated temperatures are known to stimulate methanogenesis, anaerobic oxidation of methane, sulfate reduction and essentially microbial sulfide consumption, likely explaining the shift to a phylogenetically more diverse sulfide oxidizing community based on RNA.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-9-8)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-9-8)
    Abstract: High alkalinity values observed in coastal seas promote the uptake of CO 2 from the atmosphere. However, the alkalinity budget of coastal areas and marginal seas is poorly understood, even though some of the recently observed alkalinity enhancement can be ascribed to riverine fluxes and anaerobic processes in shelf sediments. Here, we investigate the alkalinity budget of the Baltic Sea to identify previously unrecognized alkalinity sources. We quantify the generation of alkalinity and dissolved calcium (Ca) in this marginal sea applying simple mass balance calculations. Using this approach, we identify alkalinity and Ca sources of approximately 324 Gmol yr -1 and 122 Gmol yr -1 , respectively, that cannot be ascribed to the riverine input. The magnitude of the Ca source suggests that a major fraction of the excess alkalinity (244 Gmol yr -1 ) is induced by the dissolution of calcium carbonate (CaCO 3 ). A review of available field data shows that carbonate-bearing rocks at the coast and the seabed of the Baltic Sea are rapidly eroded and may provide sufficient CaCO 3 to close the Ca budget. Hence, dissolution of eroded CaCO 3 is the most likely source for the Ca enrichment observed in Baltic Sea water. This hypothesis is supported by mass accumulation rates of sediments derived from radioisotope data that are evaluated to derive a basin-wide rate of mud to muddy sand accumulation at the bottom of the Baltic Sea. The resulting value (139 Tg yr -1 ) exceeds current estimates of riverine particle fluxes into the Baltic Sea by more than one order of magnitude and confirms that rates of till erosion are sufficiently high to account for the Ca and most of the alkalinity excess in Baltic Sea water. Finally, we show that deliberate addition of CaCO 3 to sediments deposited in the Baltic Sea could neutralize significant amounts of CO 2 and help to achieve net-zero greenhouse gas emissions in the Baltic region.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-12-8)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-12-8)
    Abstract: Benthic nitrogen cycling in the Mauritanian upwelling region (NW Africa) was studied in June 2014 from the shelf to the upper slope where minimum bottom water O 2 concentrations of 25 µM were recorded. Benthic incubation chambers were deployed at 9 stations to measure fluxes of O 2 , dissolved inorganic carbon (DIC) and nutrients (NO 3 - , NO 2 - , NH 4 + , PO 4 3- , H 4 SiO 4 ) along with the N and O isotopic composition of nitrate (δ 15 N-NO 3 - and δ 18 O-NO 3 - ) and ammonium (δ 15 N-NH 4 + ). O 2 and DIC fluxes were similar to those measured during a previous campaign in 2011 whereas NH 4 + and PO 4 3- fluxes on the shelf were 2 – 3 times higher and possibly linked to a long-term decline in bottom water O 2 concentrations. The mean isotopic fractionation of NO 3 - uptake on the margin, inferred from the loss of NO 3 - inside the chambers, was 1.5 ± 0.4 ‰ for 15/14 N ( 15 ϵ app ) and 2.0 ± 0.5 ‰ for 18/16 O ( 18 ϵ app ). The mean 18 ϵ app : 15 ϵ app ratio on the shelf ( & lt; 100 m) was 2.1 ± 0.3, and higher than the value of 1 expected for microbial NO 3 - reduction. The 15 ϵ app are similar to previously reported isotope effects for NO 3 - respiration in marine sediments but lower than determined in 2011 at a same site on the shelf. The sediments were also a source of 15 N-enriched NH 4 + (9.0 ± 0.7 ‰). A numerical model tuned to the benthic flux data and that specifically accounts for the efflux of 15 N-enriched NH 4 + from the seafloor, predicted a net benthic isotope effect of N loss ( 15 ϵ sed ) of 3.6 ‰; far above the more widely considered value of ~0‰. This result is further evidence that the assumption of a universally low or negligible benthic N isotope effect is not applicable to oxygen-deficient settings. The model further suggests that 18 ϵ app : 15 ϵ app trajectories & gt; 1 in the benthic chambers are most likely due to aerobic ammonium oxidation and nitrite oxidation in surface sediments rather than anammox, in agreement with published observations in the water column of oxygen deficient regions.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 11 ( 2024-2-27)
    Abstract: Sediment fluxes to the seafloor govern the fate of elements and compounds in the ocean and serve as a prerequisite for research on elemental cycling, benthic processes and sediment management strategies. To quantify these fluxes over seafloor areas, it is necessary to scale up sediment mass accumulation rates (MAR) obtained from multiple sample stations. Conventional methods for spatial upscaling involve averaging of data or spatial interpolation. However, these approaches may not be sufficiently precise to account for spatial variations of MAR, leading to poorly constrained regional sediment budgets. Here, we utilize a machine learning approach to scale up porosity and 210 Pb data from 145 and 65 stations, respectively, in the Skagerrak. The models predict the spatial distributions by considering several predictor variables that are assumed to control porosity and 210 Pb rain rates. The spatial distribution of MAR is based on the predicted porosity and existing sedimentation rate data. Our findings reveal highest MAR and 210 Pb rain rates to occur in two parallel belt structures that align with the general circulation pattern in the Skagerrak. While high 210 Pb rain rates occur in intermediate water depths, the belt of high MAR is situated closer to the coastlines due to lower porosities at shallow water depths. Based on the spatial distributions, we calculate a total MAR of 34.7 Mt yr -1 and a 210 Pb rain rate of 4.7 · 10 14 dpm yr -1 . By comparing atmospheric to total 210 Pb rain rates, we further estimate that 24% of the 210 Pb originates from the local atmospheric input, with the remaining 76% being transported laterally into the Skagerrak. The updated MAR in the Skagerrak is combined with literature data on other major sediment sources and sinks to present a tentative sediment budget for the North Sea, which reveals an imbalance with sediment outputs exceeding the inputs. Substantial uncertainties in the revised Skagerrak MAR and the literature data might close this imbalance. However, we further hypothesize that previous estimates of suspended sediment inputs into the North Sea might have been underestimated, considering recently revised and elevated estimates on coastal erosion rates in the surrounding region of the North Sea.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...