GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Forests and Global Change Vol. 5 ( 2022-4-15)
    In: Frontiers in Forests and Global Change, Frontiers Media SA, Vol. 5 ( 2022-4-15)
    Abstract: Plant distribution patterns may indicate habitat specialization either by closely related species with conserved traits or by phylogenetically distant species with converging traits. Lianas represent a large proportion of the overall tropical species diversity and abundance. Despite their importance, little is known about the relationship between habitat specialization and the phylogenetic structure of lianas, especially at the landscape scale where forest disturbances and hydro-edaphic gradients are crucial. To explore this knowledge gap, we used one of the most diverse lineages of Neotropical lianas to test whether (i) landscape environmental gradients explain liana species diversity and composition, (ii) habitat specialization is phylogenetically conserved along ecological gradients, and (iii) closely related liana species have more similar distribution patterns. We hypothesized that hydro-edaphic and forest disturbance gradients determine the compartmentalization of a subset of closely related species in different portions of the ecological gradients. To test our hypothesis, we examined the distribution of the tribe Bignonieae on 34 1-ha permanent plots systematically distributed over a 42 km 2 forested landscape area in Central Amazon. We used proxies for the hydro-edaphic, forest disturbance, and soil nutrient gradients. Liana diversity increased along the hydro-edaphic gradient (i.e., toward dry plateaus), but slightly decreased along the forest disturbance gradient. Further, we found evidence of habitat specialization along the hydro-edaphic gradient on plateaus with deeper water tables, where liana assemblages are subsets of closely related species, exhibiting phylogenetic clustering. The opposite pattern was found on valleys, where liana assemblages were phylogenetically overdispersed. Our results support the role of phylogenetic niche conservatism on plateaus and a stronger environmental filter within the hydrologically dynamic valleys, associated with a functional convergence of more distantly related species. The selection of more distantly related species on hydrologically dynamic areas is a general pattern among trees, palms and now lianas. We conclude that ecological filters and phylogenetic history have played fundamental roles in structuring liana assemblages unevenly at the landscape scale. Fine-scale hydrology determines several aspects of plant community organization, whose mechanisms need to be experimentally investigated in the Amazon basin.
    Type of Medium: Online Resource
    ISSN: 2624-893X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2968523-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2018
    In:  Frontiers in Plant Science Vol. 9 ( 2018-3-14)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 9 ( 2018-3-14)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Forests and Global Change Vol. 6 ( 2023-5-5)
    In: Frontiers in Forests and Global Change, Frontiers Media SA, Vol. 6 ( 2023-5-5)
    Abstract: Water availability is an important driver of plant functional biogeography. Most studies focus on the effects of precipitation, and neglect the contribution of groundwater as a source when the water table depth (WTD) is accessible to roots. Previous studies suggested that shallow water tables select for acquisitive traits. These studies have mostly contrasted shallow vs. deep water tables, without considering a more fine-grained perspective within shallow water tables or the temporal WTD behavior. Here we tested whether the degree of variation in WTD translates into divergent modes of trait selection. We expect constantly shallow WTD leading to the selection of acquisitive traits, whilst high fluctuation of WTD would lead to tree communities with more conservative traits. We used community and trait data (wood density and leaf traits) from 25 1-ha forest monitoring plots spread over 600 km in central Amazonia, covering a gradient of shallow to intermediate (0–8 m deep) WTD along the Purus-Madeira interfluve. Wood density was measured directly in trunk cores (498 trees) and leaf traits (Specific Leaf Area, Leaf Dry Mass Content, Leaf Thickness) of & gt;6,000 individuals were estimated with FT-NIR (Fourier-Transformed Near-Infrared Spectroscopy) spectral models calibrated with cross-Amazonian data. We observed a turnover of families, genera, and species along the gradient of temporal WTD fluctuation range. This taxonomic turnover was accompanied by a change in wood traits, with higher wood density associated to higher WTD fluctuation and higher climatic water deficit. Leaf traits, however, varied in the opposite direction than initially hypothesized, i.e., trees had more acquisitive traits toward intermediate WTD with higher fluctuation. Based on those results, we propose that the effect of WTD selection should be conceptualized in a quadratic form, going from water excess in very shallow WTD ( & lt;2 m, limiting condition due to anoxia, selecting conservative traits), to moist in intermediate WTD (between 2 and 5 m deep, favorable condition with constant water supply, selecting acquisitive traits), to water deficit in deep WTD ( & gt;5 m, limiting condition, with conservative traits again).
    Type of Medium: Online Resource
    ISSN: 2624-893X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2968523-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Forests and Global Change Vol. 5 ( 2022-11-3)
    In: Frontiers in Forests and Global Change, Frontiers Media SA, Vol. 5 ( 2022-11-3)
    Abstract: There is a concern that environmental threats that result in local biodiversity loss compromise traditional peoples’ livelihoods and their traditional ecological knowledge (TEK). Nonetheless, studies usually only analyze how people’s characteristics influence TEK. Here, we investigated both: how the personal characteristics of local specialists (forest experience, gender, and origin) and environmental threats (deforestation, mining, and fires) influence some components of TEK associated with forests. From 2015 to 2019, we conducted free-listing interviews with 208 specialists from 27 communities in and near 10 protected areas (PAs) in Brazilian Amazonia. We recorded forest trees and palms that the specialists mentioned as used, managed, and traded. Plant knowledge was variable, since 44% of the 795 ethnospecies were mentioned only once. Using Mixed-Effects Models, we identified that people with longer forest experience and men tended to cite more used and traded ethnospecies. Women knew more about human food, while men knew more about construction and animal food. Specialists with greater forest experience knew more about protective management and planting. Specialists living in communities influenced by mining cited fewer used ethnospecies, and those in more deforested communities cited proportionally more planting. Environmental threats had smaller effects on TEK than personal characteristics. The components of TEK that we assessed highlight the forest’s great utility and the importance of management of PAs to maintain biodiversity and traditional people’s livelihoods. The communities’ stocks of TEK persisted in the face of environmental threats to PAs, highlighting the resistance of traditional peoples in the face of adversities. This quantitative approach did not show the trends that are generally imagined, i.e., loss of forest TEK, but demonstrates that if we want to change the Amazonian development model to keep the forest standing, knowledge exists and resists.
    Type of Medium: Online Resource
    ISSN: 2624-893X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2968523-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...