GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 7 ( 2020-12-23)
    Kurzfassung: The Arctic climate is changing rapidly. The warming and resultant longer open water periods suggest a potential for expansion of marine vegetation along the vast Arctic coastline. We compiled and reviewed the scattered time series on Arctic marine vegetation and explored trends for macroalgae and eelgrass ( Zostera marina ). We identified a total of 38 sites, distributed between Arctic coastal regions in Alaska, Canada, Greenland, Iceland, Norway/Svalbard, and Russia, having time series extending into the 21st Century. The majority of these exhibited increase in abundance, productivity or species richness, and/or expansion of geographical distribution limits, several time series showed no significant trend. Only four time series displayed a negative trend, largely due to urchin grazing or increased turbidity. Overall, the observations support with medium confidence (i.e., 5–8 in 10 chance of being correct, adopting the IPCC confidence scale) the prediction that macrophytes are expanding in the Arctic. Species distribution modeling was challenged by limited observations and lack of information on substrate, but suggested a current (2000–2017) potential pan-Arctic brown macroalgal distribution area of 655,111 km 2 (140,433 km 2 intertidal, 514,679 km 2 subtidal), representing an increase of about 45% for subtidal- and 8% for intertidal macroalgae since 1940–1950, and associated polar migration rates averaging 18–23 km decade –1 . Adjusting the potential macroalgal distribution area by the fraction of shores represented by cliffs halves the estimate (340,658 km 2 ). Warming and reduced sea ice cover along the Arctic coastlines are expected to stimulate further expansion of marine vegetation from boreal latitudes. The changes likely affect the functioning of coastal Arctic ecosystems because of the vegetation’s roles as habitat, and for carbon and nutrient cycling and storage. We encourage a pan-Arctic science- and management agenda to incorporate marine vegetation into a coherent understanding of Arctic changes by quantifying distribution and status beyond the scattered studies now available to develop sustainable management strategies for these important ecosystems.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2020
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-7-13)
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2021
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-2-17)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-2-17)
    Kurzfassung: Contrasting models predict two different climate change scenarios for the Southern Ocean (SO), forecasting either less or stronger vertical mixing of the water column. To investigate the responses of SO phytoplankton to these future conditions, we sampled a natural diatom dominated (63%) community from today’s relatively moderately mixed Drake Passage waters with both low availabilities of iron (Fe) and light. The phytoplankton community was then incubated at these ambient open ocean conditions (low Fe and low light, moderate mixing treatment), representing a control treatment. In addition, the phytoplankton was grown under two future mixing scenarios based on current climate model predictions. Mixing was simulated by changes in light and Fe availabilities. The two future scenarios consisted of a low mixing scenario (low Fe and higher light) and a strong mixing scenario (high Fe and low light). In addition, communities of each mixing scenario were exposed to ambient and low pH, the latter simulating ocean acidification (OA). The effects of the scenarios on particulate organic carbon (POC) production, trace metal to carbon ratios, photophysiology and the relative numerical contribution of diatoms and nanoflagellates were assessed. During the first growth phase, at ambient pH both future mixing scenarios promoted the numerical abundance of diatoms (∼75%) relative to nanoflagellates. This positive effect, however, vanished in response to OA in the communities of both future mixing scenarios (∼65%), with different effects for their productivity. At the end of the experiment, diatoms remained numerically the most abundant phytoplankton group across all treatments (∼80%). In addition, POC production was increased in the two future mixing scenarios under OA. Overall, this study suggests a continued numerical dominance of diatoms as well as higher carbon fixation in response to both future mixing scenarios under OA, irrespective of different changes in light and Fe availability.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-3-10)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-3-10)
    Kurzfassung: Marine forests and kelps as their foundation species are threatened by ocean warming especially at the warm distributional edges. Previously identified genetic divergence and ecotypic differentiation within kelp species may allow to produce more resilient lineages by intraspecific outbreeding among populations. In a mechanistic investigation of heat stress, heterosis (hybrid vigour), and underlying gene expression patterns, we assessed the thermal performance of inbred (selfings) and outbred (reciprocal crosses) sporophytes of the N-Atlantic kelp Laminaria digitata among clonal isolates from two divergent populations; one from the temperate North Sea (Helgoland) and one from the Arctic (Spitsbergen). First, we investigated the upper thermal tolerance of microscopic sporophytes in a 14-day experiment applying sublethal to lethal 20–23°C. The upper survival temperature of microscopic sporophytes was lower for the inbred Arctic selfing (21°C) than for the temperate selfing and the reciprocal crosses (22°C). Only in the temperate selfing, 4.5% of sporophytes survived 23°C. We then subjected 4–7 cm long sporophytes to a control temperature (10°C), moderate (19°C) and sublethal to lethal heat stress (20.5°C) for 18 days to assess gene expression in addition to physiological parameters. Growth and optimum quantum yield decreased similarly in the reciprocal crosses and the temperate selfing at 19 and 20.5°C, while inbred Arctic sporophytes died within seven days at both 19 and 20.5°C. In response to 20.5°C, 252 genes were constitutively regulated across all surviving lineages, which we use to describe metabolic regulation patterns in response to heat stress in kelp. At sublethal 20.5°C, ca. 150 genes were differentially expressed by either crossed lineage in comparison to the temperate selfing, indicating that they maintained a growth response similar to the temperate selfing with differential metabolic regulation during sublethal heat stress. Subtle differences in physiology and the differential expression of nine genes between the reciprocal crosses at 20.5°C indicate that female and male gametophytes may contribute differently to offspring traits. We consider potential inbreeding depression in the Spitsbergen selfing and quantify the better performance of both crosses using heterosis-related parameters. We discuss the potential and risks of outbreeding to produce more resilient crops for mariculture and marine forest restoration.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-9-1)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-9-1)
    Kurzfassung: These extensive kelps forest are among the most productive and diverse habitats on the planet, playing an important ecological role in marine ecosystems. These habitats have been affected by anthropogenic factors worldwide and directly by environmental variations resulting from climate change. The Magellan ecoregion has the southernmost kelp forests in the world, dominated by the species Macrocystis pyrifera . This species presents high ecophysiological plasticity being able to inhabit heterogeneous environments, characteristic of the fjord and channel systems of the region, and has high ecological, sociocultural, and economic importance for local coastal communities. To understand the ecophysiological acclimation strategies of M. pyrifera , samples from different blades were collected at different depths at four locations in the Magellan Ecoregion: Possession Bay, Skyring Sound, Otway Sound, and Puerto del Hambre seasonally. Abiotic measurements (salinity, temperature, and PAR light) were carried out for each location sampled. Measurements of photosynthetic parameters, F v / F m , rETRmax, E k and α; pigment analysis of Chl a , Chl c , and fucoxanthin; and fecundity analysis of the sporophylls of each population studied were carried out on the M. pyrifera sporophytes. Significant differences were observed between seasons, locality, and depth of blades. Each population generally showed different photoacclimation processes, depending on the local conditions such as salinity values and probably tidal cycles. This is reflected in the photosynthetic, pigment, and fecundity values obtained during this study. The higher F v / F m values in all populations during the winter and autumn seasons and the differences in Chl c and fucoxanthin concentration during the winter period in Otway Sound and Puerto del Hambre population suggest the marked seasonal acclimation of M. pyrifera . In addition, the coastal environmental heterogeneity observed in the Magellan ecoregion related to salinity gradients (Skyring Sound) or wide tidal amplitudes (Possession Bay) influences the acclimation strategy of each population of M. pyrifera . Therefore, the characteristics of each population should be considered in order to promote its sustainability in times of social and climate change.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2023
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-10-11)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-10-11)
    Kurzfassung: Kelps are important foundation species in coastal ecosystems currently experiencing pronounced shifts in their distribution patterns caused by ocean warming. While some populations found at species’ warm distribution edges have been recently observed to decline, expansions of some species have been recorded at their cold distribution edges. Reduced population resilience can contribute to kelp habitat loss, hence, understanding intraspecific variations in physiological responses across a species’ latitudinal distribution is crucial for its conservation. To investigate potential local responses of the broadly distributed kelp Saccharina latissima to marine heatwaves in summer, we collected sporophytes from five locations in Europe (Spitsbergen, Bodø, Bergen, Helgoland, Locmariaquer), including populations exposed to the coldest and warmest local temperature regimes. Meristematic tissue from sporophytes was subjected to increasing temperatures of Δ+2, Δ+4 and Δ+6°C above the respective mean summer temperatures (control, Δ±0°C) characteristic for each site. Survival and corresponding physiological and biochemical traits were analyzed. Vitality (optimum quantum yield, F v /F m ) and growth were monitored over time and biochemical responses were measured at the end of the experiment. Growth was highest in northern and lowest in southern populations. Overall, northern populations from Spitsbergen, Bodø and Bergen were largely unaffected by increasing summer temperatures up to Δ+6°C. Conversely, sporophytes from Helgoland and Locmariaquer were markedly stressed at Δ+6°C: occurrence of tissue necrosis, reduced F v /F m , and a significantly elevated de-epoxidation state of the xanthophyll cycle (DPS). The variations in phlorotannins, mannitol and tissue C and N contents were independent of temperature treatments and latitudinal distribution pattern. Pronounced site-specific variability in response to increasing temperatures implies that exceeding a threshold above the mean summer temperature exclusively affect rear-edge (southernmost) populations.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2021
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2019
    In:  Frontiers in Marine Science Vol. 6 ( 2019-12-12)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 6 ( 2019-12-12)
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2019
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2020
    In:  Frontiers in Marine Science Vol. 7 ( 2020-12-23)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 7 ( 2020-12-23)
    Kurzfassung: Kelps in the Arctic region are facing challenging natural conditions. They experience over 120 days of darkness during the polar night surviving on storage compounds without conducting photosynthesis. Furthermore, the Arctic is experiencing continuous warming as a consequence of climate change. Such temperature increase may enhance the metabolic activity of kelps, using up storage compounds faster. As the survival strategy of kelps during darkness in the warming Arctic is poorly understood, we studied the physiological and transcriptomic responses of Saccharina latissima , one of the most common kelp species in the Arctic, after a 2-week dark exposure at two temperatures (0 and 4°C) versus the same temperatures under low light conditions. Growth rates were decreased in darkness but remained stable at two temperatures. Pigments had higher values in darkness and at 4°C. Darkness had a greater impact on the transcriptomic performance of S. latissima than increased temperature according to the high numbers of differentially expressed genes between dark and light treatments. Darkness generally repressed the expression of genes coding for glycolysis and metabolite biosynthesis, as well as some energy-demanding processes, such as synthesis of photosynthetic components and transporters. Moreover, increased temperature enhanced these repressions, while the expression of some genes encoding components of the lipid and laminaran catabolism, glyoxylate cycle and signaling were enhanced in darkness. Our study helps to understand the survival strategy of kelp in the early polar night and its potential resilience to the warming Arctic.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2020
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2016
    In:  Frontiers in Marine Science Vol. 3 ( 2016-12-15)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 3 ( 2016-12-15)
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2016
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Frontiers Media SA ; 2023
    In:  Frontiers in Marine Science Vol. 10 ( 2023-6-13)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 10 ( 2023-6-13)
    Kurzfassung: Broadly distributed seaweeds, such as the boreal-temperate kelp species Saccharina latissima , contain a multitude of metabolites supporting acclimation to environmental changes, such as temperature and salinity. In Europe, S. latissima occurs along the coasts from Spitsbergen to Portugal, including the Baltic Sea, exhibiting great morphological plasticity. We investigated the morphological and biochemical traits of field-collected sporophytes from 16 different locations across the species entire distributional range in relation to local abiotic conditions (sea surface temperature, salinity). By statistically linking morphological and biochemical data to geographic information that also took into account the respective sampling depth, we aimed to obtain first insights into the site-specific adaptive features of this species. Frond length and width, mannitol and phlorotannin contents, and molar C:N ratio showed strong intraspecific variability among S. latissima sporophytes dependent on individual local abiotic drivers. Despite the conspicuous impact of local abiotic factors on specimens’ morphology, we could not determine habitat-specific signatures in the biochemical phenotypes. Even though our findings are based on a relative small sample size per site, they cover a broad biogeographical range and support a high plasticity of S. latissima sporophytes. The study provides a first base for studying separation processes of populations across latitudes and conservation ecology.
    Materialart: Online-Ressource
    ISSN: 2296-7745
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2023
    ZDB Id: 2757748-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...