GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • 2020-2024  (2)
Material
Publisher
  • Frontiers Media SA  (2)
Language
Years
  • 2020-2024  (2)
Year
  • 1
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 14 ( 2023-8-16)
    Abstract: Early diagnosis of plant diseases is needed to promote sustainable plant protection strategies. Applied predictive modeling over hyperspectral spectroscopy (HS) data can be an effective, fast, cost-effective approach for improving plant disease diagnosis. This study aimed to investigate the potential of HS point-of-measurement (POM) data for in-situ, non-destructive diagnosis of tomato bacterial speck caused by Pseudomonas syringae pv. tomato (Pst), and bacterial spot, caused by Xanthomonas euvesicatoria (Xeu), on leaves (cv. cherry). Bacterial artificial infection was performed on tomato plants at the same phenological stage. A sensing system composed by a hyperspectral spectrometer, a transmission optical fiber bundle with a slitted probe and a white light source were used for spectral data acquisition, allowing the assessment of 3478 spectral points. An applied predictive classification model was developed, consisting of a normalizing pre-processing strategy allied with a Linear Discriminant Analysis (LDA) for reducing data dimensionality and a supervised machine learning algorithm (Support Vector Machine – SVM) for the classification task. The predicted model achieved classification accuracies of 100% and 74% for Pst and Xeu test set assessments, respectively, before symptom appearance. Model predictions were coherent with host-pathogen interactions mentioned in the literature (e.g., changes in photosynthetic pigment levels, production of bacterial-specific molecules, and activation of plants’ defense mechanisms). Furthermore, these results were coherent with visual phenotyping inspection and PCR results. The reported outcomes support the application of spectral point measurements acquired in-vivo for plant disease diagnosis, aiming for more precise and eco-friendly phytosanitary approaches.
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Robotics and AI, Frontiers Media SA, Vol. 9 ( 2022-1-28)
    Abstract: Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.
    Type of Medium: Online Resource
    ISSN: 2296-9144
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2781824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...