GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively), and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Understanding the dynamics and fate of methane (CH 4 ) release from oceanic seepages on margins and shelves into the water column, and quantifying the budget of its total discharge at different spatial and temporal scales, currently represents a major scientific undertaking. Previous works on the fate of methane escaping from the seafloor underlined the challenge in both, estimating its concentration distribution and identifying gradients. In April 2019, the Envri Methane Cruise has been conducted onboard the R/V Mare Nigrum in the Western Black Sea to investigate two shallow methane seep sites at ∼120 m and ∼55 m water depth. Dissolved CH 4 measurements were conducted with two continuous in-situ sensors: a membrane inlet laser spectrometer (MILS) and a commercial methane sensor (METS) from Franatech GmbH. Additionally, discrete water samples were collected from CTD-Rosette deployment and standard laboratory methane analysis was performed by gas chromatography coupled with either purge-and-trap or headspace techniques. The resulting vertical profiles (from both in situ and discrete water sample measurements) of dissolved methane concentration follow an expected exponential dissolution function at both sites. At the deeper site, high dissolved methane concentrations are detected up to ∼45 m from the seabed, while at the sea surface dissolved methane was in equilibrium with the atmospheric concentration. At the shallower site, sea surface CH 4 concentrations were four times higher than the expected equilibrium value. Our results seem to support that methane may be transferred from the sea to the atmosphere, depending on local water depths. In accordance with previous studies, the shallower the water, the more likely is a sea-to-atmosphere transport of methane. High spatial resolution surface data also support this hypothesis. Well localized methane enriched waters were found near the surface at both sites, but their locations appear to be decoupled with the ones of the seafloor seepages. This highlights the need of better understanding the processes responsible for the transport and transformation of the dissolved methane in the water column, especially in stratified water masses like in the Black Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Predictability of the dispersion of sediment plumes induced by potential deep-sea mining activities is still very limited due to operational limitations on in-situ observations required for a thorough validation and calibration of numerical models. Here we report on a plume dispersion experiment carried out in the German license area for the exploration of polymetallic nodules in the northeastern tropical Pacific Ocean in 4,200 m water depth. The dispersion of a sediment plume induced by a small-scale dredge experiment in April 2019 was investigated numerically by employing a sediment transport module coupled to a high-resolution hydrodynamic regional ocean model. Various aspects including sediment characteristics and ocean hydrodynamics were examined to obtain the best statistical agreement between sensor-based observations and model results. Results show that the model is capable of reproducing suspended sediment concentration and redeposition patterns observed during the dredge experiment. Due to a strong southward current during the dredging, the model predicts no sediment deposition and plume dispersion north of the dredging tracks. The sediment redeposition thickness reaches up to 9 mm directly next to the dredging tracks and 0.07 mm in about 320 m away from the dredging center. The model results suggest that seabed topography and variable sediment release heights above the seafloor cause significant changes especially for the low sedimentation pattern in the far-field area. Near-bottom mixing is expected to strongly influence vertical transport of suspended sediment.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Two lander-based devices, the Bubble-Box and GasQuant-II, were used to investigate the spatial and temporal variability and total gas flow rates of a seep area offshore Oregon, United States. The Bubble-Box is a stereo camera–equipped lander that records bubbles inside a rising corridor with 80 Hz, allowing for automated image analyses of bubble size distributions and rising speeds. GasQuant is a hydroacoustic lander using a horizontally oriented multibeam swath to record the backscatter intensity of bubble streams passing the swath plain. The experimental set up at the Astoria Canyon site at a water depth of about 500 m aimed at calibrating the hydroacoustic GasQuant data with the visual Bubble-Box data for a spatial and temporal flow rate quantification of the site. For about 90 h in total, both systems were deployed simultaneously and pressure and temperature data were recorded using a CTD as well. Detailed image analyses show a Gaussian-like bubble size distribution of bubbles with a radius of 0.6–6 mm (mean 2.5 mm, std. dev. 0.25 mm); this is very similar to other measurements reported in the literature. Rising speeds ranged from 15 to 37 cm/s between 1- and 5-mm bubble sizes and are thus, in parts, slightly faster than reported elsewhere. Bubble sizes and calculated flow rates are rather constant over time at the two monitored bubble streams. Flow rates of these individual bubble streams are in the range of 544–1,278 mm 3 /s. One Bubble-Box data set was used to calibrate the acoustic backscatter response of the GasQuant data, enabling us to calculate a flow rate of the ensonified seep area (∼1,700 m 2 ) that ranged from 4.98 to 8.33 L/min (5.38 × 10 6 to 9.01 × 10 6 CH 4 mol/year). Such flow rates are common for seep areas of similar size, and as such, this location is classified as a normally active seep area. For deriving these acoustically based flow rates, the detailed data pre-processing considered echogram gridding methods of the swath data and bubble responses at the respective water depth. The described method uses the inverse gas flow quantification approach and gives an in-depth example of the benefits of using acoustic and optical methods in tandem.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The abyssal seafloor in the Clarion-Clipperton Zone (CCZ) in the NE Pacific hosts the largest abundance of polymetallic nodules in the deep sea and is being targeted as an area for potential deep-sea mining. During nodule mining, seafloor sediment will be brought into suspension by mining equipment, resulting in the formation of sediment plumes, which will affect benthic and pelagic life not naturally adapted to any major sediment transport and deposition events. To improve our understanding of sediment plume dispersion and to support the development of plume dispersion models in this specific deep-sea area, we conducted a small-scale, 12-hour disturbance experiment in the German exploration contract area in the CCZ using a chain dredge. Sediment plume dispersion and deposition was monitored using an array of optical and acoustic turbidity sensors and current meters placed on platforms on the seafloor, and by visual inspection of the seafloor before and after dredge deployment. We found that seafloor imagery could be used to qualitatively visualise the redeposited sediment up to a distance of 100 m from the source, and that sensors recording optical and acoustic backscatter are sensitive and adequate tools to monitor the horizontal and vertical dispersion of the generated sediment plume. Optical backscatter signals could be converted into absolute mass concentration of suspended sediment to provide quantitative data on sediment dispersion. Vertical profiles of acoustic backscatter recorded by current profilers provided qualitative insight into the vertical extent of the sediment plume. Our monitoring setup proved to be very useful for the monitoring of this small-scale experiment and can be seen as an exemplary strategy for monitoring studies of future, upscaled mining trials. We recommend that such larger trials include the use of AUVs for repeated seafloor imaging and water column plume mapping (optical and acoustical), as well as the use of in-situ particle size sensors and/or particle cameras to better constrain the effect of suspended particle aggregation on optical and acoustic backscatter signals.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-14
    Description: Abyssal plain communities rely on the overlying water column for a settling flux of organic matter. The origin and rate of this flux as well as the controls on its fine-scale spatial distribution following seafloor settlement are largely unquantified. This is particularly true across regions where anthropogenically-induced seafloor disturbance has occurred. Here, we observed, quantified and mapped a mass deposition event of gelatinous zooplankton carcasses (pyrosomes) in July-September 2015 across one such physically disturbed region in the Peru Basin polymetallic nodule province (4150 m). Seafloor in this area was disturbed with a plough harrow in 1989 (as part of the DISCOL experiment) causing troughs in the sediment. Other parts were disturbed with an epibenthic sled (EBS) during a cruise in 2015 resulting in steep-walled, U-shaped troughs. We investigated two hypotheses: a) gelatinous food falls contribute significantly to the abyssal plain carbon pump and b) physical seafloor disturbance influences abyssal distribution of organic matter. We combined optical and bathymetric seafloor observations, to analyze pyrosome distribution on seabeds with different levels of disturbance. 2954 pyrosome colonies and associated taxa were detected in 〉 14,000 seafloor images. The mean regional carbon (C) deposition associated with pyrosome carcasses was significant compared to the flux of particulate organic C (182 to 1543%), and the total respired benthic C flux in the DISCOL Experimental Area (39 to 184%). EBS-disturbed seafloor tracks contained 72 times more pyrosome-associated C than an undisturbed reference site, and up to 4 times more than an area disturbed in 1989. Deposited pyrosomes collected had a higher proportion of labile fatty acids compared to the sediment. We document the temporal and spatial extent of an abyssal food fall event with unprecedented detail and show that physical seafloor disturbance results in the accumulation of detrital material. Such accumulation may reduce oxygen availability and alter benthic community structure. Understanding both the relevance of large food falls and the fine scale topography of the seafloor, is necessary for impact assessment of technologies altering seafloor integrity (e.g. as a result of bottom-trawling or deep seabed mining) and may improve their management on a global scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...