GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (4)
  • Finnish Zoological and Botanical Publ. Board  (2)
  • 1
    Publication Date: 2019-09-23
    Description: The Boknis Eck (BE) time series station, initiated in 1957, is one of the longest-operated time series stations worldwide. We present the first statistical evaluation of a data set of nine physical, chemical and biological parameters in the period of 1957–2013. In the past three to five decades, all of the measured parameters underwent significant long-term changes. Most striking is an ongoing decline in bottom water oxygen concentration, despite a significant decrease of nutrient and chlorophyll a concentrations. Temperature-enhanced oxygen consumption in the bottom water and a prolongation of the stratification period are discussed as possible reasons for the ongoing oxygen decline despite declining eutrophication. Observations at the BE station were compared with model output of the Kiel Baltic Sea Ice Ocean Model (BSIOM). Reproduced trends were in good agreement with observed trends for temperature and oxygen, but generally the oxygen concentration at the bottom has been overestimated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-26
    Description: The study aims at the identification of areas in the Baltic Sea from where potential pollution is transported to vulnerable regions. Generally, there is higher risk of ship accidents along the shipping routes and along the approaching routes to the harbors. The spreading of harmful substances is mainly controlled by prevailing atmospheric conditions and wind-induced local sea surface currents. Especially, spawning, nursery and tourist areas are considered high-vulnerable areas. With sophisticated high resolution numerical models, the complex current system of the Baltic Sea has been simulated, and with subsequent drift modeling areas of reduced risk or high-risk areas for environmental pollution could be identified. In a further step, optimum fairways of reduced risk could be obtained by following probability minima of coastal hits or maxima for the time it takes to reach the coast. The results could be useful for environmental management for the maritime industry to minimize the risk of environmental pollution in case of ship accidents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-26
    Description: In order to detect shifts in community structure and function associated with global change, the natural background fluctuation in these traits must be known. In a 6 yr study we characterized the composition of young benthic communities at 7 sites along the 300 km coast of the Kiel and Lübeck bights in the German Baltic Sea and we quantified their interannual variability of taxonomic and functional composition. Along the salinity gradient from NW to SE, the relative abundance of primary producers decreased while that of heterotrophs increased. Along the same gradient, annual productivity tended to increase. Taxonomic and functional richness were higher in Kiel Bight as compared to Lübeck Bight. With increasing species richness functional group richness showed saturation indicating an increasing functional redundancy in species rich communities. While taxonomic fluctuations between years were substantial, functionality of the communities seem preserved in most cases. Environmental conditions potentially driving these fluctuations are winter temperatures and current regimes. We tentatively define a confidence range of natural variability in taxonomic and functional composition a departure from which might help identifying an ongoing regime shift driven by global change. In addition, we propose to use RELATE, a statistical procedure in the PRIMER (Plymouth Routines in Multivariate Ecological Research) package to distinguish directional shifts in time ("signal") from natural temporal fluctuations ("noise")
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Finnish Zoological and Botanical Publ. Board
    In:  Boreal Environment Research, 7 . pp. 405-415.
    Publication Date: 2019-09-23
    Description: From numerical model simulations, fluxes of volume, heat and salt have been calculated for different hydrographical sections in areas which are important for the deep water exchange in the Baltic Sea. The calculated deep water flow in the Arkona basin is in accordance with independent estimations obtained from profile data. Model results reveal strong seasonal and inter-annual variability in the calculated fluxes. The variability is governed by the prevailing atmospheric conditions. It is found that the strength of the upper layer low saline flow in the Arkona Basin which on average is directed to the west, opposite to the mean wind direction, is compensated by a high saline flow in deeper layers. The upper layer flow is a combination of a flow forced by the fresh water surplus directed to the west, and a wind-driven part. In dependence on the prevailing wind conditions the resulting flow is either increased or decreased. Furthermore, increasing upper layer flow results in an increased lower layer flow in opposite direction. The annual mean flow is weakly correlated with the annual mean runoff to the Baltic Sea. In accordance with the mean circulation, the flow through the Bornholm Channel is on average directed to the east, and south of Bornholm to the west indicating an import of heat and salt to the Bornholm Basin through the Bornholm Channel and an export south of Bornholm. Flux characteristics change further downstream in the Stolpe Channel. The volume flow in the upper layer shows a strong seasonal signal. During autumn to spring the flow is mainly directed to the east, in summer, the flow direction is reversed. Flow in westerly directions is related to increased lower layer flow in easterly directions. On average, the net flow through the Stolpe channel is directed to the east which is in accordance with the mean circulation. Calculated fluxes show high intra- and inter-annual variability with no obvious trend during the simulation period. The variability of the deep water stratification in the deep basins of the Baltic Sea is directly controlled by the changing flux characteristics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: In the Baltic Sea, salinity and its large variability, both horizontal and vertical, are key physical factors in determining the overall stratification conditions. In addition to that, salinity and its changes also have large effects on various ecosystem processes. Several factors determine the observed two-layer vertical structure of salinity. Due to the excess of river runoff to the sea, there is a continuous outflow of water masses in the surface layer with a compensating inflow to the Baltic in the lower layer. Also, the net precipitation plays a role in the water balance and consequently in the salinity dynamics. The salinity conditions in the sea are also coupled with the changes in the meteorological conditions. The ecosystem is adapted to the current salinity level: a change in the salinity balance would lead to ecological stress of flora and fauna, and related negative effects on possibilities to carry on sustainable development of the ecosystem. The Baltic Sea salinity regime has been studied for more than 100 years. In spite of that, there are still gaps in our knowledge of the changes of salinity in space and time. An important part of our understanding of salinity are its long-term changes. However, the available scenarios for the future development of salinity are still inaccurate. We still need more studies on various factors related to salinity dynamics. Among others more knowledge is needed, e.g. from meteorological patterns in various space and time scales and mesoscale variability in precipitation. Also, updated information on river runoff and inflows of saline water is needed to close the water budget. We still do not understand accurately enough the water mass exchange between North Sea and Baltic Sea and within its sub-basins. Scientific investigations of the complicated vertical mixing processes are additionally required. This paper is a continuation and update of the BACC II book which was published in 2015, including information from articles issued until 2012. After that, there have been many new publications on the salinity dynamics, not least because of the Major Baltic Inflow which took place in December 2014. Several key topics have been investigated, including the coupling of long-term variations of climate with the observed salinity changes. Here the focus is on observing and indicating the role of climate change for salinity dynamics. New results of MBI-dynamics and related water mass interchange between the Baltic Sea and the North Sea have been published. Those studies also included results from the MBI-related meteorological conditions, variability in salinity and exchange of water masses between various scales. All these processes are in turn coupled with changes in the Baltic Sea circulation dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...