GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-15
    Description: Paired benthic Cd/Ca and δ13C records have been generated along core M35003 in the western tropical Atlantic. Decreased glacial water column dissolved cadmium (Cdw) and increased benthic δ13C indicate enhanced ventilation with nutrient-deplete intermediate waters, in line with similar inferences from other North Atlantic mid-depth records. An abrupt early deglacial δ13C collapse that is associated with a marked positive Cdw anomaly indicates a transient collapse of mid-depth ventilation from North Atlantic sources, conceivably in conjunction with the H1 meltwater anomaly. The Cdw record displays fine-scale fluctuations that mimic the Greenland Dansgaard/Oeschger (D/O) cycles and show decreased Cdw during stadials. This pattern is opposite to Cdw variations in a deep water record from Bermuda Rise that display increased Cdw concentrations during stadials. The divergent pattern between mid-depth and deep water Cdw records indicates millennial-scale switches between deep and shallow convection in the glacial North Atlantic, at the pace of the D/O climatic cycles. Several high-amplitude anomalies occur in the Cdw record that reach levels similar to those observed today in the North Pacific. While a substantial nutrient increase in the mid-depth North Atlantic cannot be ruled out during these events, changes of pore water chemistry and Cd/P fractionation during biological uptake offer alternative scenarios to explain the peak Cdw maxima.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-02
    Description: Carbonate deposition at two core sites in the subarctic Pacific (48°N, 133°W; 2.9 km and 3.7 km water depth) follows the standard Pacific carbonate cycles, with glacial values being increased over interglacial values. Benthicδ13C follows the global trend; that is, glacial values are more negative than interglacial values. Comparison with the benthicδ13C record of North Atlantic DSDP Site 552 (56°N, 23°W; 2.3 km water depth) shows the North Pacific records to be nearly in phase with and continuously more negative relative to the North Atlantic record. This suggests that concentrations of∑CO2(org) were permanently higher in the North Pacific than in the North Atlantic during the past 750,000 years conceivably supporting the hypothesis that there was no deep-water forming in the late Pleistocene North Pacific. Whereas one would expect that the North Pacific deep waters were continuously more corrosive to carbonates than deep waters in the North Atlantic, carbonate deposition at the deep North Pacific core sites is enhanced during glacial periods, and occasionally higher than at shallow North Atlantic Site 552 even though Site 552 was probably above lysocline-depth during most of the late Pleistocene. This apparent paradox can be resolved only by invoking an increase in alkalinity in the glacial North Pacific which would have increased the degree of carbonate ion saturation and thereby improved the state of carbonate preservation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-07
    Description: Records of benthic foraminiferal assemblage variations and benthic δ13C along 12 sediment cores from the western Iberian Margin, between 36° and 42°N at water depths from 820 to 3580 m, are used to monitor fluctuations of the Mediterranean Outflow Water (MOW) during the past 30 ka. The chronostratigraphy of the cores is based on planktonic δ18O records, 14C AMS-dating, and the recognition of Heinrich Events H1 through H4. Increased abundances of suspension feeding benthic foraminifers, denoted as ’Epibenthos Group‘, closely match areas where the recent MOW core layers impinge on the continental slope at 800 and 1300 m water depth, and near-bottom current velocities are enhanced. Elevated ‘Epibenthos Group’ abundances, increased benthic δ13C, and sedimentological evidence for winnowing and erosion are found in glacial sections up to the earliest Termination I in cores at water depths between 1600 and 2200 m off southern Portugal. The combined evidence reveals enhanced current activity at these depths due to a deep glacial MOW. The MOW advection at the Portuguese margin during the last Glacial was about 700 m deeper than today, conceivably forced by increased MOW density due to higher salinity and colder temperatures of Mediterranean waters. The deep MOW current gradually decreased in strength and shoaled to 1300 m water depth during the Termination and early Holocene. A shallow MOW core layer became active with the onset of Termination I at depths between 600 and 1000 m. Both the shallow and deep MOW current culminated during the Younger Dryas period. The present flow pattern with two MOW core layers centred at 800 and 1300 m water depth was established between 7.5 and 5.5 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Global and Planetary Change, 36 . pp. 237-264.
    Publication Date: 2017-09-13
    Description: Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500–600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean–climate responses on similar and even faster time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...