GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-21
    Description: Highlights: • We coupled LA-ICP-MS Me/Ca single-chamber composition of four planktonic foraminifera with eddy induced hydrographic changes • The Mg/Ca-based temperature difference between N. dutertrei and G. scitula are likely to be an eddy proxy suitable for down-core application • Near-surface dwelling species inhabit well oxygenated surface waters and show lower test Mn/Ca values, compared to deeper dwelling species • Planktonic foraminifera Mn/Ca test values are in line with water column variability in dissolved Mn concentrations Hydrographic conditions in the Mozambique Channel are dominated by the passing of large anticyclonic eddies, propagating poleward into the upstream Agulhas area. Further south, these eddies have been found to control the shedding of Agulhas rings into the Atlantic ocean, thereby playing a key role in Indo-Atlantic Ocean exchange. The element composition of several planktonic foraminifera species collected from sediment trap samples, was compared to in situ water column data from the Mozambique Channel. Single-chamber trace element composition of these foraminifera reveals a close coupling with hydrographic changes induced by anticyclonic eddies. Obtained Mg/Ca values for the surface dwelling Globigerinoides ruber as well as the thermocline dwelling Neogloboquadrina dutertrei follow temperature changes and reduced temperature stratification during eddy conditions. At greater depth. Globorotalia scitula and Pulleniatina obliquiloculata record stable temperatures and thus respond to hydrographic changes with a deepening in habitat depth. Furthermore, test Mn/Ca values indicate a close relationship between water column oxygenation and Mn incorporation in these planktonic foraminiferal species
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Fe-binding ligands associated with primary productivity together with ligands from the Arctic Ocean are the main sources of Fe-binding ligands in surface waters of Fram Strait. • Fe-binding ligands are present in a high concentrations in front of the glacier terminus, but the ligands have a relatively low binding capacity, thus less reactive. • Low binding strength coupled with low competing strength of ligands result in a higher inorganic Fe concentration, causing Fe to precipitate or scavenged. Abstract There is a paucity of data on Fe-binding ligands in the Arctic Ocean. Here we investigate the distribution and chemical properties of natural Fe-binding ligands in Fram Strait and over the northeast Greenland shelf, shedding light on their potential sources and transport. Our results indicate that the main sources of organic ligands to surface waters of Fram Strait included primary productivity and supply from the Arctic Ocean. We calculated the mean total Fe-binding ligand concentration, [Lt], in Polar Surface Water from the western Fram Strait to be 1.65 ± 0.4 nM eq. Fe. This value is in between reported values for the Arctic and North Atlantic Oceans, confirming reports of north to south decreases in [Lt] from the Arctic Ocean. The differences between ligand sources in different biogeochemical provinces, resulted in distinctive ligand properties and distributions that are reflected in [Lt], binding strength (log KFe'L′) and competing strength (log αFe'L) of ligands. Higher [Lt] was present near the Nioghalvfjerdsfjorden (79 N) Glacier terminus and in the Westwind Trough (median of [Lt] = 2.17 nM eq. Fe; log KFe'L′ = 12.3; log αFe'L = 3.4) than in the Norske Trough (median of [Lt] = 1.89 nM eq. Fe; log KFe'L′= 12.8; log αFe'L = 3.8) and in Fram Strait (median of [Lt] = 1.38 nM eq. Fe; log KFe'L′ = 13; log αFe'L= 3.9). However, organic ligands near the 79 N Glacier terminus and in the Westwind Trough were weaker, and therefore less reactive than organic ligands in the Norske Trough and in Fram Strait. Our findings reveal the fundamental mechanism that underpin transport of dissolved-Fe (DFe) from the 79 N Glacier to Fram Strait, less reactive ligands will reduce Fe solubility. Accordingly, a portion of the glacial DFe will not be transported over the shelf into the ocean. The lower ligand binding strength in the outflow results in a higher inorganic Fe concentration, [Fe´], which is more prone to precipitation and/or scavenging than Fe complexed with stronger ligands. Ongoing changes in the Arctic and sub-Arctic Oceans will influence both terrestrially derived and in-situ produced Fe-binding ligands, and therefore will have consequences for Fe solubility and availability to microbial populations and Fe cycling in Fram Strait.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-19
    Description: Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for these proxy relationships are still unknown. This culture study investigates the impact of different seawater [Mg2 +] on calcification in two benthic foraminiferal species precipitating contrasting Mg/CaCC: Ammonia aomoriensis, producing low-Mg calcite and Amphistegina lessonii, producing intermediate-Mg calcite. Foraminiferal growth and test thickness were determined and, Mg/Ca was analyzed using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Results show that at present-day seawater Mg/CaSW of ~ 5, both species have highest growth rates, reflecting their adaptation to modern seawater element concentrations. Test thickness is not significantly affected by different Mg/CaSW. The relationship between Mg/CaSW and Mg/CaCC shows a distinct positive y-axis intercept, possibly reflecting at least two processes involved in foraminiferal biomineralization. The associated Mg partition (DMg) changes non-linearly with increasing Mg/CaSW, hence suggesting that the DMg is best described by an exponential function approaching an asymptote.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...