GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-23
    Description: Highlights: • Three different types of pCO2 sensors detected sedimentary artificial CO2 leaks in the water column. • Distribution of leaked CO2 in the water column featured high temporal and spatial heterogeneity. • Clear effect of CO2 leakage on the water column was visible only at high flow rates and low tides. • Fast recovery of the water column pCO2 was observed after the CO2 release was stopped. • Multivariate statistics can help to distinguish between anthropogenic and natural CO2 sources. Abstract: This work is focused on results from a recent controlled sub-seabed in situ carbon dioxide (CO2) release experiment carried out during May–October 2012 in Ardmucknish Bay on the Scottish west coast. Three types of pCO2 sensors (fluorescence, NDIR and ISFET-based technologies) were used in combination with multiparameter instruments measuring oxygen, temperature, salinity and currents in the water column at the epicentre of release and further away. It was shown that distribution of seafloor CO2 emissions features high spatial and temporal heterogeneity. The highest pCO2 values (∼1250 μatm) were detected at low tide around a bubble stream and within centimetres distance from the seafloor. Further up in the water column, 30–100 cm above the seabed, the gradients decreased, but continued to indicate elevated pCO2 at the epicentre of release throughout the injection campaign with the peak values between 400 and 740 μatm. High-frequency parallel measurements from two instruments placed within 1 m from each other, relocation of one of the instruments at the release site and 2D horizontal mapping of the release and control sites confirmed a localized impact from CO2 emissions. Observed effects on the water column were temporary and post-injection recovery took 〈7 days. A multivariate statistical approach was used to recognize the periods when the system was dominated by natural forcing with strong correlation between variation in pCO2 and O2, and when it was influenced by purposefully released CO2. Use of a hydrodynamic circulation model, calibrated with in situ data, was crucial to establishing background conditions in this complex and dynamic shallow water system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-25
    Description: Carbon dioxide sequestration in sub-seafloor aims to store CO2 inside geological trapping structures below the seafloor. However there are concerns related to the possibility of leakage from the storage sites and potential consequences on the marine environment. In order to develop safe and reliable methods for CO2 monitoring, field studies were conducted in a natural analogue–an area where there is a natural release of CO2 from the seafloor. Due to the very high volume of gas emitted, this natural analogue could be considered as the worst-case scenario for a possible leakage from a sub-seabed storage site. Sampling procedures for free and dissolved gas and measuring techniques of the main physical and chemical parameters were developed for use both from the surface and directly underwater by scientific scuba divers. The first results of the research indicate that high levels of CO2 released in the marine realm strongly affect the local environmental conditions with a generalized acidification of the seawater. The experience gained in this study allows further development of a more accurate and suitable monitoring suite that will integrate sensors for measuring pH, dissolved CO2, and eventually, acoustic systems for the detection, monitoring and quantification of gas bubbles. The monitoring system could be deployed on the seafloor for long-term monitoring or could be carried onboard movable platforms such as ROV’s (Remote Operated Vehicles) or AUV’s (Autonomous Underwater Vehicles) for systematic surveys of the sub-seabed storage areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society Conference. , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy, pp. 1-4.
    Publication Date: 2012-07-06
    Description: The autonomous measurement of dissolved carbon dioxide (CO2) is of great and still increasing importance for addressing many scientific as well as socio-economic questions. Although there is a need for reliable, fast and easy-to-use instrumentation to measure the partial pressure of dissolved CO2 (pCO2) in situ, only few autonomous underwater sensors are available. Here we present the measuring principle as well as the latest development state of a commercial sensor (HydroC™/CO2, CONTROS Systems & Solutions GmbH, Kiel, Germany), which is optimized in a collaboration between the IFM-GEOMAR and the manufacturer. In situ tests and laboratory experiments are essential parts of the comprehensive optimization process, which aims at the successful autonomous long-term deployment on e.g. surface buoys, underwater observatories and floats.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    OceanObs'09
    In:  In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. , ed. by Hall, J., Harrison, D. E. and Stammer, D. ESA Publication, WPP-306 . OceanObs'09, Venice, Italy, p. 8.
    Publication Date: 2012-07-06
    Description: Autonomous chemical sensors are required to document the marine carbon dioxide system's evolving response to anthropogenic CO2 inputs, as well as impacts on short- and long-term carbon cycling. Observations will be required over a wide range of spatial and temporal scales, and measurements will likely need to be maintained for decades. Measurable CO2 system variables currently include total dissolved inorganic carbon (DIC), total alkalinity (AT), CO2 fugacity (fCO2), and pH, with comprehensive characterization requiring measurement of at least two variables. These four parameters are amenable to in situ analysis, but sustained deployment remains a challenge. Available methods encompass a broad range of analytical techniques, including potentiometry, spectrophotometry, conductimetry, and mass spectrometry. Instrument capabilities (precision, accuracy, endurance, reliability, etc.) are diverse and will evolve substantially over the time that the marine CO2 system undergoes dramatic changes. Different suites of measurements/parameters will be appropriate for different sampling platforms and measurement objectives.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...