GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (80)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (3)
  • 1
    Publication Date: 2021-03-19
    Description: Mud Volcanism and fluid seepage are widespread phenomena in the Gulf of Cadiz (SW Iberian Margin). In this seismically active region located at the boundary between the African and Eurasian plates, fluid flow is typically focused on deeply rooted active strike-slip faults. The geochemical signature of emanating fluids from various mud volcanoes (MVs) has been interpreted as being largely affected by clay mineral dehydration and recrystallization of Upper Jurassic carbonates. Here we present the results of a novel, fully-coupled 1D basin-scale reactive-transport model capable of simulating major fluid forming processes and related geochemical signatures by considering the growth of the sediment column over time, compaction of sediments, diffusion and advection of fluids, as well as convective and conductive heat flow. The outcome of the model is a realistic approximation to the development of the sediment pore water system over geological time scales in the Gulf of Cadiz. Combined with a geochemical reaction transport model for clay mineral dehydration and calcium carbonate recrystallization, we were able to reproduce measured concentrations of Cl, strontium and 87Sr/86Sr of emanating mud volcano fluids. These results support previously made qualitative interpretations and add further constraints on fluid forming processes, reaction rates and source depths. The geochemical signature at Porto MV posed a specific problem, because of insufficient constraints on non-radiogenic 87Sr/86Sr sources at this location. We favour a scenario of basement-derived fluid injection into basal Upper Jurassic carbonate deposits (Hensen et al., 2015). Although the mechanism behind such basement-derived flow, e.g. along permeable faults, remains speculative at this stage, it provides an additional source of low 87Sr/86Sr fluids and offers an idea on how formation water from the deepest sedimentary strata above the basement can be mobilized and eventually initiate the advection of fluids feeding MVs at the seafloor. The dynamic reactive-transport model presented in this study provides a new tool addressing the combined simulation of complex physical-geochemical processes in sedimentary systems. The model can easily be extended and applied to similar geological settings, and thus help us to provide a fundamental understanding of fluid dynamics and element recycling in sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-26
    Description: Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Highlights • An empirical diagenetic model includes redox-dependent P storage by microorganisms. • Sediment mixing and burrowing by animals strongly enhances P burial. • Supporting evidence for a decrease in oceanic P inventory in the early Paleozoic. Abstract A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43− fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment–water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm−2 yr−1. The fractionation factor between the precipitates and the pore waters is estimated at −2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-19
    Description: During the last glaciation the Marmara Sea was isolated from the Mediterranean Sea because global sea level was below the depth of the Dardanelles sill. Prior to the postglacial reconnection to the Mediterranean Sea (~14.7 cal kyr BP), the surface waters of the Marmara Sea were brackish (Marmara Lake). Freshening of a previously saline Marmara Sea could have happened via spill-out of brackish to fresh water from the surface water of the Black Sea through the Bosphorus Strait. This hypothesis has not been tested against alternative possibilities (salt flushing by river run-off and precipitation). Here we use the dissolved Cl- and stable isotope composition (δO18 and δD) of Marmara Sea sediment pore water to estimate the salinity and stable isotope composition of Marmara Lake bottom water and to evaluate possible freshening scenarios. We use a transport model to simulate pore water Cl-, δO18 and δD in Marmara Sea sediments in the past 130 kyr, which includes the last interglacial (130-75 cal kyr BP), the last glacial (75-14 cal kyr BP) and the current postglacial period. Our results show that the bottom waters of the Marmara Lake were brackish (~4‰ salinity) and isotopically depleted (δO18~-10.2‰ and δD~-70‰, respectively) compared to modern seawater. Their salinity and stable isotope ratios show that they are a mixture of Mediterranean waters and Danube-like waters implying that the freshening took place via spill-out of freshwater through the Bosphorus. Our modelling approach indicates that the transit of fresh water from glacial Eurasia to the Mediterranean via the Marmara Sea started at least 50 cal kyr BP, was continuous throughout most of the last glaciation and persisted up to the post glacial reconnection to the Mediterranean through the Dardanelles sill (14.7 cal kyr BP). These results are consistent with previously published micropaleontological and geochemical investigations of sediment cores that indicate lacustrine conditions in the Marmara Sea from about 75 to 14.7 cal kyr BP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-24
    Description: This study investigates the controls on organic carbon and molybdenum (Mo) accumulation in sediments deposited within the Western Interior Seaway across the Cenomanian–Turonian boundary interval (94.34–93.04 Ma) including Oceanic Anoxic Event 2 (OAE2). Carbon fluxes to the sediment–water interface (reflecting changes in primary productivity) and bottom-water oxygen concentrations (reflecting preservation effects) are reconstructed from field data and used to constrain a benthic model that simulates the geochemistry of unconsolidated sediments as they were deposited. The results show that increased availability of reactive iron prevents Mo sequestration as thiomolybdate (MoS42 −) during OAE2 (O2 ~ 105 μM) by (i) inhibiting sulfate reduction, and (ii) buffering any free sulfide that becomes available. In the post-OAE2 period (O2 ~ 50 μM), Mo accumulation is favored by a large reduction in iron flux. Importantly, this occurs in parallel with oxygenated bottom waters and high rates of aerobic carbon degradation in the surface sediments, implying that elevated Mo burial fluxes in ancient marine facies do not necessarily reflect euxinic or even anoxic conditions within the water column. Our findings suggest that both an increase in production and preservation lead to enrichment in organic carbon in the Western Interior Seaway. More generally, the results demonstrate that a careful consideration of the coupling between iron, carbon and oxygen cycles during the early stages of diagenesis is critical for interpreting geochemical proxies in modern and ancient settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3−, NO2−, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 μM) and increased to 125 μM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (−10.3 mmol O2 m−2 d−1) and decreased quasi-exponentially with water depth to −3.2 mmol O2 m−2 d−1. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N m−2 d−1. Overall, the sediments acted as net sink for DIN. Observed increases in δ15NNO3 and δ18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0‰ (15εapp) and 14.1‰ (18εapp). Measurements of δ15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2−. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2−. The principal findings were that (i) net benthic 14N/15N fractionation (εDEN) was 12.9 ± 1.7‰, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2− (−22 ± 1.9‰), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported εDEN for fine-grained sediments are much lower (4–8‰). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater–seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 132 . pp. 413-439.
    Publication Date: 2019-09-24
    Description: A simple earth system model is developed to simulate global carbon and phosphorus cycling over the late Quaternary. It is focused on the geological cycling of C and P via continental weathering, volcanic and metamorphic degassing, hydrothermal processes and burial at the seabed. A simple ocean model is embedded in this geological model where the global ocean is represented by surface water, thermocline and deep water boxes. Concentrations of dissolved phosphorus, dissolved inorganic carbon, and total alkalinity are calculated for each box. The partial pressure of CO2 in the atmosphere (pCO(2A)) is determined by exchange processes with the surface ocean and the continents. It serves as key prognostic model variable and is assumed to govern surface temperatures and global sea-level. The model is formulated as autonomous system, in which the governing equations have no explicit time-dependence. For certain parameter values, the model does not converge towards a steady-state but develops stable self-sustained oscillations. These free oscillations feature pCO(2A) minima and maxima consistent with the ice-core record when vertical mixing in the ocean is allowed to vary in response to pCO(2A)-controlled temperature change. A stable 100-kyr cycle with a rapid transition from glacial to interglacial conditions is obtained when additional non-linear equations are applied to calculate deep ocean mixing, iron fertilization and the depth of organic matter degradation as function of pCO(2A)-controlled surface temperature. The delta C-13 value of carbon in the ocean/atmosphere system calculated in these model runs is consistent with the benthic delta C-13 record. However, the simulated C-13 depletion in the glacial ocean is not driven by the decline in terrestrial carbon stocks but by sea-level change controlling the rates of organic carbon burial and weathering at continental margins. The pCO(2A)-and delta C-13 oscillations develop without any form of external Milankovitch forcing. They are induced and maintained by sea-level change generating persistent imbalances in the marine carbon and phosphorus budgets. Stable oscillations are also obtained when sea-level change is allowed to lag temperature with a realistic time scale for ice-sheet adjustment
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: At many cold vent sites authigenic carbonates precipitate due to the release of carbonate alkalinity during the anaerobic oxidation of methane. Carbonate precipitation often induces the formation of massive crusts at the sediment surface or within surface sediments. The range of physical and biogeochemical conditions allowing for the formation of carbonate crusts is largely unknown so that the significance of these widespread manifestations of fluid flow is unclear. Here, we use numerical modeling to investigate the conditions that induce carbonate crust formation in the sediment and the effect of crust formation on sediment porosity and fluid flow rate. Starting with the conditions prevailing at a previously investigated reference site located on Hydrate Ridge, off Oregon, several parameters are systematically varied in a number of numerical experiments. These parameters include coefficients of bioturbation and bioirrigation, sedimentation rate, fluid flow velocity, methane concentration in the ascending vent fluids, and pH and saturation state at the sediment–water interface. The simulations show that carbonate crusts in the sediments only form if the fluids contain sufficient dissolved methane (〉50 mM) and if bioturbation coefficients are low (〈0.05 cm2 a−1). Moreover, high sedimentation rates (〉50 cm ka−1) inhibit crust formation. Bioirrigation induces a downward displacement of the precipitation zone and accelerates the formation of a solid crust. Crusts only form over a rather narrow range of upward fluid flow velocities (20–60 cm a−1), which is somewhat enlarged (up to 90 cm a−1) if the overlying bottom waters are supersaturated with respect to calcite. At higher flow rates, methane is rapidly exported into the water column so that methane oxidation and carbonate precipitation cannot proceed within the surface sediment. The formation of a several centimeters thick carbonate crust in surface sediments is typically completed after a few hundred years (100–500 a). Crust formation reduces the supply of methane to surface sediments which imposes a strong resistance against diffusive and advective methane transport. Therefore, rates of anaerobic methane oxidation and sulfide production are diminished and thus the density and metabolism of chemosynthetic biological communities is limited by crust formation. Due to the moderate flow rates and the slow diffusive transport, only very little methane escapes into the bottom water overlying carbonate-encrusted vent areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-15
    Description: Significant sediment–ocean chemical fluxes are produced by the expulsion of sedimentary fluids at continental margins. Although such fluxes could play a role in global geochemical cycles, few quantitative estimates of their global, or even regional, significance exist. We carried out a pore water geochemical study of fluids expelled from the Dvurechenskii mud volcano (DMV) in the Black Sea, with the aim of understanding the role played by mud volcanoes in Black Sea geochemical cycles. The DMV is presently expelling highly saline fluids particularly enriched in geochemically important species such as Li+ (1.5 mM), B (2.17 mM), Ba2+ (0.57 mM), Sr2+ (0.79 mM), I (0.4 mM) and dissolved inorganic nitrogen (DIN) (22 mM). A combination of geochemical indicators shows that this geochemical signature was acquired via organic matter and silicate alteration processes in the subsurface down to 3-km depth and near-surface gas hydrate formation. We used a simple transport model to estimate the benthic fluxes of these solutes at the DMV. Our results show that the DMV is expelling fluids at a rather low seepage rate (8–25 cm year−1) resulting in a total water flux of 9.4×10−5 km3 year−1. This gentle regime of fluid expulsion results in Li+, B, Sr2+, I and DIN fluxes between 3.8×104 and 2.1×106 mol year−1. Surface biogeochemical processes affect the benthic fluxes of Ba2+ such that the deep Ba2+ flux is completely consumed through the precipitation of authigenic barite (BaSO4) in surface sediments. The Black Sea I cycle is likely to be affected by mud volcanism, if the 50 known Black Sea mud volcanoes share the rather sluggish activity of the DMV. Mud volcano fluxes of Li, B, Sr and DIN, instead, are too small to affect Black Sea geochemical cycles. On a global scale, mud volcanism could play a role in the marine cycles of Li, B, Sr, I and DIN if current estimates of mud volcano abundance are correct.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...