GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-27
    Description: Non-ribosomal peptide synthetases are complex multimodular biosynthetic machines that assemble various important and medically relevant peptide antibiotics. An interesting subgroup comprises the cyclodepsipeptide synthetases from fungi synthesizing cyclohexa- and cyclo-octadepsipeptides with antibacterial, anthelmintic, insecticidal, and anticancer properties; some are marketed drugs. We exploit the modularity of these highly homologous synthetases by fusing the hydroxy-acid-activating module of PF1022 synthetase with the amino-acid-activating modules of enniatin and beauvericin synthetase, thus yielding novel hybrid synthetases. The artificial synthetases expressed in Escherichia coli and the fungus Aspergillus niger yielded new cyclodepsipeptides, thus paving the way for the exploration of these derivatives for their bioactivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Trends in Microbiology, 26 (6). pp. 538-554.
    Publication Date: 2020-01-02
    Description: Since the onset of microbiology in the late 19th century, scientists have been growing microorganisms almost exclusively as pure cultures, resulting in a limited and biased view of the microbial world. Only a paradigm shift in cultivation techniques – from axenic to mixed cultures – can allow a full comprehension of the (chemical) communication of microorganisms, with profound consequences for natural product discovery, microbial ecology, symbiosis, and pathogenesis, to name a few areas. Three main technical advances during the last decade are fueling the realization of this revolution in microbiology: microfluidics, next-generation 3D-bioprinting, and single-cell metabolomics. These technological advances can be implemented for large-scale, systematic cocultivation studies involving three or more microorganisms. In this review, we present recent trends in microbiology tools and discuss how these can be employed to decode the chemical language that microorganisms use to communicate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...