GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cham :Springer International Publishing AG,  (1)
Document type
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Neurosciences. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (453 pages)
    Edition: 1st ed.
    ISBN: 9783319296470
    Series Statement: Interdisciplinary Applied Mathematics Series ; v.43
    DDC: 572.5160151
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- Part I Basic Theory -- 1 Some Background Physiology -- 1.1 Introduction -- 1.2 Common Features of Calcium Dynamics:The Calcium Toolbox -- 1.2.1 Agonists, Receptors, and Second Messengers -- 1.2.2 Internal Compartments -- 1.2.3 Internal Calcium Channels: IPR and RyR -- 1.2.4 IP3 Metabolism -- 1.2.5 Calcium Influx -- 1.2.6 Calcium Removal from the Cytoplasm -- 1.2.7 Calcium-Binding Proteins and Fluorescent Dyes -- 1.2.8 Microdomains and Nanodomains -- 1.3 Spatiotemporal and Hierarchical Organisation -- 1.4 Examples of Calcium Signalling -- 1.4.1 Cardiac Myocytes -- 1.4.2 Airway Smooth Muscle -- 1.4.3 Xenopus Oocytes -- 1.4.4 Pancreatic and Parotid Acinar Cells -- 1.4.5 Airway Epithelial Cells -- 2 The Calcium Toolbox -- 2.1 G Protein-Coupled Receptors -- 2.1.1 A Simple GPCR Model -- 2.1.2 More Complex Receptor Models -- 2.1.3 A Kinetic Model of GPCR Signalling -- 2.2 SERCA and PMCA -- 2.2.1 Unidirectional Models -- 2.2.2 Bidirectional Models -- 2.2.3 Coupling to ATP and pH -- 2.3 The Sodium/Calcium Exchanger -- 2.3.1 Unidirectional Enzyme Model -- 2.3.2 Bidirectional Markov Model -- 2.3.3 Modelling an Electrogenic Exchanger -- 2.3.4 Bidirectional Enzyme Model -- 2.3.5 A Model with Variable Stoichiometry -- 2.4 Mitochondria -- 2.4.1 The Mitochondrial Uniporter -- 2.4.2 The Mitochondrial Sodium/Calcium Exchanger -- 2.5 Voltage-Gated Calcium Channels -- 2.5.1 The Simplest Models -- 2.5.2 Permeation Models of Calcium Channels -- 2.5.3 Inactivation of Calcium Channels by Calcium -- 2.5.4 A Two-Mode Model of Calcium-InducedInactivation -- 2.6 Receptor-Operated and Store-Operated Channels -- 2.6.1 Receptor-Operated Channels -- 2.6.2 Store-Operated Channels -- 2.6.3 STIM-Orai Binding -- 2.7 Inositol Trisphosphate Receptors -- 2.7.1 An Eight-State Markov Model. , 2.7.2 Reduction of the Eight-State Markov Model -- 2.7.3 Gating Models -- 2.7.4 Modal Models -- 2.7.5 Simplifying the Modal Model -- 2.7.6 The Question of Local Calcium Concentration -- 2.7.7 Open Probability and Flux -- 2.8 Ryanodine Receptors -- 2.8.1 An Algebraic Model -- 2.8.2 A Markov Model of RyR Inactivation -- 2.8.3 Luminal Gating -- 2.8.4 Markov Models with Adaptation -- 2.8.5 Two-State Models -- 2.8.6 Modal Gating Model -- 2.9 Calcium Buffers -- 2.9.1 Fast Buffers or Excess Buffers -- 2.9.1.1 A Simplifying Transformation -- 2.10 Inositol Trisphosphate Metabolism -- 2.10.1 IP3 Production -- 2.10.2 IP3 Removal -- 3 Basic Modelling Principles: Deterministic Models -- 3.1 Types of Models -- 3.2 Spatially Homogeneous Models -- 3.2.1 A Model Based on IPR Dynamics -- 3.2.1.1 Steady States and Oscillations -- 3.2.2 A Model Based on ER Refilling -- 3.2.3 A Model That Incorporates MicrodomainsAround IPR -- 3.2.4 Calcium Excitability: Calcium-Induced CalciumRelease -- 3.2.5 Open-Cell and Closed-Cell Models -- 3.2.6 The Importance of Calcium Influx -- 3.2.7 IP3 Dynamics: Class I and Class II Models -- 3.2.7.1 Hybrid Models -- 3.2.7.2 Pulse Experiments -- 3.3 Spatially Distributed Models -- 3.3.1 A Brief Note on Terminology -- 3.3.2 Homogenisation -- 3.3.3 Membrane Fluxes -- 3.3.4 Closed-Cell Spatial Models -- 3.4 Microdomains -- 3.4.1 Calcium at the Mouth of an Open Channel -- 3.4.1.1 The Excess Buffer Approximation -- 3.4.1.2 The Rapid Buffer Approximation -- 3.4.2 Incorporating ER Depletion -- 3.4.3 The Channel as a Disk -- 3.4.4 Calcium Concentration Changes Quickly in Microdomains -- 3.4.5 Microdomains Between Organelles -- 3.4.6 Connecting a Microdomain to the Cell -- 3.4.7 Can Microdomains Be Modelled Deterministically? -- 3.5 Calcium Waves -- 3.5.1 The Fire-Diffuse-Fire Model -- 3.5.2 Continuous Release Sites. , 3.5.3 Waves in Multiple Dimensions -- 3.5.4 Phase Waves -- 3.6 Intercellular Waves -- 3.6.1 Mechanisms of Intercellular Wave Propagation -- 3.6.2 Propagation by Gap Junctions -- 3.6.2.1 An Example: Mechanically-Stimulated Waves in Airway Epithelial Cells -- 3.6.3 Regenerative and Partially Regenerative Waves -- 3.6.4 Paracrine Propagation -- 3.7 Connecting the Cytosol to the Membrane -- 3.8 The Effects of Buffers -- 3.8.1 Qualitative Effects -- 3.8.2 Quantitative Effects -- 4 Hierarchical and Stochastic Modelling -- 4.1 Introduction -- 4.1.1 Hierarchical Modelling Across Different Structural Levels -- 4.1.2 Distributions, Blips, and Puffs -- 4.2 Characteristics of Puffs -- 4.2.1 Interpuff Interval Distributions -- 4.2.2 The Coefficient of Variation -- 4.2.3 Puffs are not Periodic -- 4.3 Properties of Sequences of Cellular Spikes -- 4.3.1 Wave Nucleation -- 4.3.2 The Effects of Buffers on Wave Nucleation -- 4.3.3 Information Content and Signal Encoding -- 4.3.4 Summary -- 4.4 Appendix: An Incomplete Theory of Calcium Spiking -- 4.4.1 Semi-Markov Processes -- 4.4.2 Interpuff Interval Distributions, Puff Duration Distributions and Their Dependencies on Cellular Parameters -- 4.4.3 Detailed Derivation of the First Passage TimeDensity -- 4.4.3.1 Calculations Based on the Laplace Transform of Waiting Time Distributions -- 4.4.3.2 Resampling an IPI Distribution to Obtain an ISI Distribution -- 4.4.4 Some Formulae -- 4.4.5 Summary -- 5 Nonlinear Dynamics of Calcium -- 5.1 An Illustrative Model: The Hybrid Model -- 5.2 Bifurcation Analysis for ODE Models -- 5.3 Model Reduction -- 5.3.1 Identifying Time Scales -- 5.3.2 Reduction Based on Timescale Separation -- 5.4 Analysis Based on Timescale Separation -- 5.4.1 Freezing Slow Variables -- 5.4.2 Geometric Singular Perturbation Theory -- 5.5 Understanding Transient Dynamics. , 5.6 Coupled Voltage and Calcium Models -- 5.7 Calcium Waves -- 5.8 Calcium Excitability and the FitzHugh-Nagumo Equations -- Part II Specific Models -- 6 Nonexcitable Cells -- 6.1 Xenopus Oocytes -- 6.1.1 A Heuristic Model for Calcium Oscillationsand Waves -- 6.1.2 Mitochondria and Spiral Wave Stability -- 6.1.3 Bistability and the Fertilisation Calcium Wave -- 6.1.4 Increased IP3 Sensitivity During Egg Maturation -- 6.2 Hepatocytes -- 6.2.1 Effect of IP3 Metabolism on Calcium Oscillations -- 6.2.1.1 Simulation Results -- 6.2.1.2 Testing the Model Predictions -- 6.2.2 Deterministic Versus Stochastic Aspects of Calcium Oscillations -- 6.2.3 Phase Waves Coordinate Calcium Spiking Between Connected Hepatocytes -- 6.2.4 Amplitude-Coded Calcium Oscillations in Fish Hepatocytes -- 6.3 Pancreatic and Parotid Acinar Cells -- 6.3.1 Introduction -- 6.3.2 Calcium Oscillations and Waves in Acinar Cells -- 6.3.3 Calcium Waves and Water Secretion -- 6.3.4 Detailed Spatial Structure of an Acinus -- 6.4 Astrocytes -- 6.4.1 Introduction -- 6.4.2 Calcium Oscillations Induced by Stimulation of mGlu5 Receptors -- 6.4.3 Towards Modelling Calcium Oscillationsin Astrocytes -- 7 Muscle -- 7.1 Introduction -- 7.2 Cardiac Myocytes -- 7.2.1 Cardiac Excitation-Contraction Coupling -- 7.2.2 Common-Pool and Local-Control Models -- 7.2.3 Calcium Sparks -- 7.2.4 The Diadic Cleft Can Be Described by a Continuous and Deterministic Model -- 7.2.5 Integrative Models -- 7.2.6 Simplified Approaches -- 7.2.6.1 The Probability Density Approach -- 7.2.7 Atrial Myocytes -- 7.3 Skeletal Myocytes -- 7.4 Smooth Muscle -- 7.4.1 Airway Smooth Muscle -- 7.4.1.1 Stochastic or Deterministic? -- 7.4.1.2 The Cytosolic Oscillator -- 7.4.1.3 The Interplay Between IP3R and RyR -- 7.4.1.4 Periodic Waves in the Model -- 7.4.1.5 More Detailed Treatment of the Membrane Currents. , 7.4.2 Vascular Smooth Muscle -- 7.5 Calcium and the Generation of Force in Smooth Muscle -- 7.5.1 The Hai-Murphy Model -- 7.5.2 Calcium, Calmodulin, and MLCK -- 7.5.3 The Frequency Response of Airway Smooth Muscle -- 8 Neurons and Other Excitable Cells -- 8.1 Introduction -- 8.2 Pre-synaptic Calcium Dynamics -- 8.2.1 Facilitation -- 8.2.2 A Model of the Residual Bound Calcium Hypothesis -- 8.2.3 A More Complex Version -- 8.3 Post-Synaptic Plasticity -- 8.3.1 Calcium/Calmodulin-Dependent Protein Kinase II as a Bistable Switch -- 8.3.2 Phenomenological Models -- 8.3.3 CaMKII as a Frequency Decoder in the Absence of Dephosphorylation -- 8.4 Pancreatic Beta Cells -- 8.4.1 Bursting in the Pancreatic Beta Cell -- 8.4.1.1 Phase-Plane Analysis -- 8.4.2 ER Calcium as a Slow Controlling Variable -- 8.4.3 Other Models -- 8.5 Pancreatic Alpha Cells -- 8.5.1 Electrical Activity of Pancreatic Alpha Cells -- 8.5.2 Calcium Dynamics in Pancreatic Alpha Cells -- 8.6 Calcium-Mediated Secretion -- 8.6.1 Prototypic Model for Calcium-Mediated Secretion -- 8.6.2 Secretion of Insulin by Pancreatic Beta Cells -- 8.6.3 Secretion of Glucagon by Pancreatic Alpha Cells -- 8.7 Hypothalamic and Pituitary Cells -- 8.7.1 The Gonadotroph -- 8.7.1.1 The Membrane Model -- 8.7.1.2 The Calcium Model -- 8.7.1.3 Results -- 8.7.2 GnRH Neurons -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...