GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant physiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (248 pages)
    Edition: 1st ed.
    ISBN: 9783319171579
    DDC: 572.8633
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Expression Analysis and Genome Annotations with RNA Sequencing -- Introduction -- Sequencing Strategy -- Genome Sequencing -- mRNA Sequencing -- Read Mapping on Reference Sequences -- Pre-processing -- Read Mapping -- SNP Detecting from Genome Sequencing -- Digital Gene Expression Profiling by mRNA-Seq -- Mapping -- Assembly -- Expression Level Estimation and Correction -- Statistical Methods for Gene Expression Data -- Hierarchical Clustering -- Multivariate Analysis Methods -- Principal Component Analysis (PCA) and Correspondence Analysis (CA) -- Self-Organizing Maps and k-Means Clustering -- References -- Chapter 2: The Application of Next Generation Sequencing Techniques to Plant Epigenomics -- Introduction -- Major Findings in Plants -- Development of Genome-Wide Approaches -- Bisulfite-Seq Experiments -- Methods -- General Considerations -- Techniques for Assaying DNA Methylation in Plants Using NGS -- DNA Methylation -- ChIP-Seq -- Nucleosome Positioning -- Small RNA-Seq -- PART3: Analysis of Next Generation Sequencing Data for Epigenomics -- Computing Requirements for Data Analysis -- Quality Control -- Pre-alignment Filtering -- Alignment -- BS-Seq Alignment -- Methylation Calling -- Estimation of Conversion Efficiency -- Downstream Analysis -- Differential Methylation Analysis -- ChIP-Seq Analysis -- Web Services -- Post-Processing -- Peak Calling -- Higher-Level Analysis -- Nucleosome Positioning Analysis -- Small RNA-Seq Analyses -- Data Visualization -- References -- Chapter 3: Whole Genome Sequencing to Identify Genes and QTL in Rice -- Overview of Genetic Analysis for Identifying Genes -- Genetic Markers to Become Obsolete? -- Rice Genetic Resources at IBRC -- MutMap -- MutMap+ -- MutMap-Gap -- QTL-Seq -- SNP-Index -- Summary -- References. , Chapter 4: Variant Calling Using NGS Data in European Aspen (Populus tremula) -- Introduction -- Raw Reads Pre-processing (Step I) -- The Short-Read Alignment (Step II) -- Alignment Algorithms -- Mismatches Between Sample and Reference Genome -- Multiple Mapping -- Post-processing Alignment (Step III) -- Local Realignment Around Indels -- Mark Duplicates -- Base Quality Score Recalibration -- Variant and Genotype Calling (Step IV) -- Methods for Genotype Calling -- Software Tools for Variant Discovery and Genotyping -- SAMtools mpileup and BCFtools -- GATK UnifiedGenotyper -- SNVer -- GATK HaplotypeCaller -- Variant Filtration (Step V) -- Conclusion -- References -- Chapter 5: Leafy Spurge Genomics: A Model Perennial Weed to Investigate Development, Stress Responses, and Invasiveness -- Introduction -- Initial Forays into the Molecular Biology of Leafy Spurge -- Leafy Spurge Enters the Genomic Era -- Experimenting with Transcriptomics -- Outcomes Obtained Using the 23,000 Element Leafy Spurge/Cassava Microarrays -- BAC Library Construction: An Important Tool for Promoter Analysis and the First Step in Full Genome Sequencing -- Shotgun Sequencing of the Leafy Spurge Genome -- Mining Old Data and New -- References -- Chapter 6: Utilization of NGS and Proteomic-Based Approaches to Gain Insights on Cellular Responses to Singlet Oxygen and Improve Energy Yields for Bacterial Stress Adaptation -- Introduction -- Reactive Oxygen Species and Singlet Oxygen -- Sources of 1O2 -- 1O2 Production in Photosynthetic Organisms -- Energy Generation in R. sphaeroides -- Quenching of 1O2 by Carotenoids -- Transcriptional Response to 1O2 by R. sphaeroides -- Alternative Responses to 1O2 by Other Organisms -- Utilization of Next-Generation Sequencing (NGS) Technologies, Proteomic, and Metabolomic Approaches to Characterize Cellular Responses. , Investigations into the Cellular Response to 1O2 and Identification of the σE Regulon -- Coupling Insights to Improved Energy Generation -- References -- Chapter 7: Experimental Evolution and Next Generation Sequencing Illuminate the Evolutionary Trajectories of Microbes -- Introduction -- What Makes Microbes Attractive to Test Evolutionary Processes? -- Experimental Evolution and Mutation Accumulation Dynamics -- The Evolutionary Trajectories of Adaptive Mutations -- Convergent Evolution in Bacterial Experimental Populations -- Experimental Evolution Under Inefficient Natural Selection -- Concluding Remarks -- References -- Chapter 8: Plant Carbohydrate Active Enzyme (CAZyme) Repertoires: A Comparative Study -- Why Do We Study Plant Cell Walls? -- How CAZymes Are Related to Cell Wall Studies? -- What Are CAZymes and the CAZyDB? -- Existing Studies on Plant CAZyomes -- dbCAN: A HMM Database for Large-Scale Analysis of CAZymes -- CAZyome of Fully Sequenced Plants -- Phylogenetic Analysis Is Useful to the Study of the Function and Evolution of CAZymes -- Future Development -- References -- Chapter 9: Metagenomics of Plant-Microbe Interactions -- References -- Chapter 10: Genes and Trans-Factors Underlying Embryogenic Transition in Plant Soma-Cells -- In Vitro Regeneration of Plant Species -- Somatic Embryogenesis -- Initiation of Somatic Embryogenesis -- Somatic Embryogenesis Is Genotype/Explant Source Dependent -- Stress-Mediated Up-regulation of Phytohormone in SE -- Auxin -- Cytokinin -- Abscisic Acid (ABA) -- Gibberellins -- Ethylene -- Induced Cell-Fate For SE -- Cellular Morphology, Physiology and Histological Pattern -- Changes in Gene Expression -- Somatic Embryo Receptor Kinase (SERK) -- WUSCHEL (WUS) -- Baby Boom (BBM) Gene -- WRKY, AOX and Ca2+ -- Altered Cellular Homeostasis Is Essential for Soma Cell-to-­Embryo Transition. , Genomics of Somatic Embryogenesis -- References -- Chapter 11: Bioinformatics Tools to Analyze Proteome and Genome Data -- Introduction -- Bioinformatics Tool to Analyze Proteomics Data -- Bioinformatics Tool to Analyze Genomics Data -- Genomic Repositories -- Similarity Search and Sequence Alignment Tools -- Variation Related Databases -- Gene Prediction Tools -- Expression Profiling Tools -- Tools for Promoter Prediction -- Genome Annotation Tools -- References -- Chapter 12: High-Throughput Transcriptome Analysis of Plant Stress Responses -- Plant Stresses and Its Genetic Regulation -- Transcriptome Analysis Upon Stress Conditions -- Transcriptome De Novo Assembly -- Functional Annotation of Unigenes by BLASTx Against Protein Databases -- Functional Classification of Unigenes by Clusters of Orthologous Groups (COG), Gene Ontology (GO), and KEGG Pathway Enrichment -- Protein Coding Region Prediction (CDS) -- Digital Gene Expression Profiling -- Unigene Expression Difference Analysis -- References -- Chapter 13: CNV and Structural Variation in Plants: Prospects of NGS Approaches -- Copy Number Variation Is Part of Genome Structural Variation -- Diffusion of CNVs Within Genomes -- Mechanisms Leading to Variation in Number of Copies -- Do CNVs Have a Biological Meaning? -- Association to Phenotypes -- Evolutionary and Adaptive Value of CNVs -- NGS Approaches and Bioinformatic Tools for CNV Detection -- The Computational Problem -- NGS and the Main Techniques of CNV Discovery -- A Classification of NGS Technologies -- NGS Technologies vs. Computational Techniques -- Future Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biofilms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9783030307578
    Language: English
    Note: Intro -- Foreword -- Preface -- Contents -- Contributors -- Abbreviations -- 1 An Introduction to Microbial Biofilm -- 1.1 Introduction -- 1.1.1 Biofilm Growth and Development -- 1.1.2 Beneficial and Naturally Occurring Biofilms -- 1.1.3 The Harmful Effects of Biofilm Formation -- 1.1.4 Naturally Occurring Biofilms -- 1.1.5 Biofilms in Health and Medicine -- 1.1.6 Control of Biofilms -- 1.1.7 Biofilm and Antibiotic Resistance -- 1.1.8 The Future of Studying Biofilms -- References -- 2 Biofilms: The Good and the Bad -- 2.1 Introduction -- 2.2 Mechanism of Bacterial Biofilm Formation -- 2.2.1 The Conditioning Layer -- 2.2.2 Reversible Adhesion -- 2.2.3 Irreversible Adhesion -- 2.2.4 Micro-colony Formation and Three-Dimensional Growth -- 2.2.5 Biofilm Formation -- 2.2.6 Maturation and Dispersal -- 2.3 Applications of Biofilms -- 2.3.1 Biofilm Uses -- 2.3.2 Bioremediation -- 2.4 Oil Spills and Contaminated Groundwater -- 2.5 Microbial Leaching -- 2.6 Biofilm Reactors -- 2.7 Biofilms in Biosensors -- 2.8 Biofilm Integrated Nanofiber Display -- 2.9 The Harmful Effects of Biofilms -- 2.9.1 The Food and Dairy Industry -- 2.9.2 Aquaculture and the Sea Food Industry -- 2.9.3 The Brewing Industry -- 2.9.4 Bio-corrosion -- 2.9.5 The Medical Industry -- References -- 3 Biofilms in Human Health -- 3.1 Introduction -- 3.2 Biofilm Structure -- 3.3 Biofilm Development -- 3.3.1 Growth of Conditioning Film on Surface -- 3.3.2 Movement of Microorganisms Towards Surface -- 3.3.3 Adherence -- 3.3.4 Colonization for Development and Division of Microbe, Formation of Microcolony and Biofilms, Change in Genotype and Phenotype -- 3.3.5 Interaction of Microorganisms inside Biofilm -- 3.4 Antibiotics and Biofilms -- 3.5 Pathogenic Mechanisms -- 3.6 Biofilm and Human Diseases -- 3.6.1 Oral Cavity -- 3.6.2 Upper Airways -- 3.6.3 Lower Airways. , 3.6.4 Gastrointestinal and Urinary Tracts -- 3.6.5 Wounds -- 3.7 Main Characteristics of Biofilm Mediated Diseases -- References -- 4 The Role of Biofilm in Originating, Mediating, and Proliferating Infectious Diseases -- 4.1 Introduction -- 4.1.1 Biofilm Origination and Mediation -- 4.2 Indwelling Devices Where Microbes Frequently Cause Biofilms -- 4.3 Biofilm-Mediated Infectious Diseases -- 4.3.1 Barrett's Esophagus and Gastric Cancer -- 4.3.2 Endotracheal Tube Colonization and Ventilator-Associated Pneumonia -- 4.3.3 Cystic Fibrosis -- 4.3.4 Chronic Otitis Media -- 4.3.5 Dental Plaque -- 4.3.6 Urinary Tract and Catheter-Associated Infections -- 4.3.7 Skin Infections by Staphylococcus -- 4.3.8 Chronic Ulcers -- 4.3.9 Prosthetic Graft Infection -- 4.3.10 Healthcare-Associated Infections -- 4.4 Other Biofilm-Mediated Infections -- 4.5 Conclusion -- References -- 5 Modern Methods in Microscopy for the Assessment of Biofilms -- 5.1 Introduction -- 5.2 Diagnosis of Biofilm Infections -- 5.2.1 Routine Microbiological Examination -- 5.2.2 Different Microscopic Methods -- 5.3 Conclusion -- References -- 6 Molecular Methods for the Assessment of Microbial Biofilms -- 6.1 Introduction -- 6.2 Why Molecular Methods? -- 6.3 Different Methods Used to Assess Biofilm: Ergin (2017) -- 6.4 Next-Generation Sequencing Technology -- 6.4.1 Advantages of NGS -- 6.4.2 Utility of NGS in Clinical Microbiology: Deurenberg et al. (2016) -- 6.4.3 Workflow of NGS -- 6.4.4 Clinical Sample/Specimen -- 6.4.5 Nucleic Acids Sequencing -- 6.4.6 Sequence Data Analysis -- 6.4.7 Application of NGS -- 6.5 Polymerase Chain Reaction (PCR) -- 6.5.1 Advantage of PCR -- 6.5.2 Workflow of PCR -- 6.5.3 Procedure and General Protocol -- 6.5.4 1-1.8% Agarose Gel Electrophoresis -- 6.5.5 Application of PCR -- 6.6 DNA-DNA Hybridization -- 6.6.1 Principle of DNA-DNA Hybridization. , 6.6.2 Major Disadvantages -- 6.6.3 DDH Protocol and Procedure -- 6.6.4 Application of DNA-DNA Hybridization -- 6.7 Microarray Technology -- 6.7.1 Application of Microarray -- References -- 7 Biofilm-Mediated Dental Diseases -- 7.1 Introduction -- 7.2 Oral Flora -- 7.3 Development -- 7.4 Oral Microbiota: Beneficial Functions -- 7.5 Oral Niches -- 7.5.1 Tongue and Buccal Mucosa -- 7.5.2 Tooth Surface -- 7.5.3 Gingival Crevice and Its Epithelium -- 7.5.4 Dental Appliances and Prosthetics -- 7.6 Factors Modulating Microbial Growth -- 7.6.1 Anatomic Factors -- 7.6.2 Saliva -- 7.6.3 Gingival Crevicular Fluid -- 7.6.4 Microbial Factors -- 7.6.5 Environmental Factors -- 7.6.6 Miscellaneous -- 7.7 Nutrition -- 7.7.1 Host Resources -- 7.7.2 Microbial Resources -- 7.8 Dental Plaque -- 7.9 Dental Plaque and Caries -- 7.9.1 Caries Origin Hypothesis -- 7.10 Dental Plaque, Dental Calculus, and Periodontitis -- 7.10.1 Calculus -- 7.10.2 Classification of Periodontal Disease -- 7.10.3 Etiology of Periodontal Disease -- 7.11 The Systemic Connection of Oral Biofilms -- 7.12 Approaches for Control of Dental Biofilm -- 7.12.1 Conventional Treatment -- 7.12.2 Mechanical Plaque Control -- 7.12.3 Oral Irrigators (Mandal et al. 2017) -- 7.12.4 Chemical Plaque Control -- 7.12.5 Local Delivery of Drugs -- References -- 8 Biofilm-Mediated Diseases of the Eye -- 8.1 Introduction -- 8.2 Endophthalmitis -- 8.3 Contact Lens Associated Keratitis -- 8.4 Crystalline Keratopathy -- 8.5 Dry Eye -- 8.6 Ocular Implants and Biofilms -- 8.6.1 Conjunctival Plug -- 8.6.2 Scleral Buckles -- 8.6.3 Lacrimal Intubation Devices -- 8.6.4 Orbital Implants -- 8.6.5 Other Biomaterials Used in Ophthalmology -- 8.7 Prevention and Treatment of Biofilms -- References -- 9 Biofilm-Mediated Diseases of the Ear, Nose, and Throat (ENT) -- 9.1 Introduction -- 9.2 Chronic Rhino-sinusitis. , 9.3 Otitis Media with Effusion -- 9.4 Cholesteatoma -- 9.5 Adenotonsillitis -- 9.6 Biofilms in Ear, Nose, and Throat Implants and Prostheses -- 9.7 Treatment -- 9.8 Prevention -- 9.9 Conclusion -- References -- 10 Biofilm-Mediated Diseases of the Heart and Lungs -- 10.1 Introduction -- 10.2 Biofilms Related to Endotracheal Tubes and Ventilator-Associated Pneumonia -- 10.3 Biofilms in Cystic Fibrosis -- 10.4 Biofilms in Pulmonary Infections -- 10.5 Biofilms in Indwelling Vascular Catheters -- 10.6 Mechanical Heart Valve Biofilms -- 10.7 Biofilms in Infective Endocarditis -- 10.8 Biofilms in Atherosclerosis -- 10.9 Cardiovascular Implantable Electronic Devices -- 10.10 Conclusion -- References -- 11 The Role of Biofilms in Medical Devices and Implants -- 11.1 Introduction -- 11.2 Mechanism of Biofilm Formation -- 11.3 Prevention and Control of Biofilms -- 11.3.1 Cell Repellent and Non-adhesive Coatings -- 11.3.2 The Active Release of Antimicrobial Compounds and Biofilm Inhibitors -- 11.3.3 Antimicrobial Coatings with Tethered Biocides -- 11.3.4 Competitive Adherence by Benign Organisms -- 11.4 Biofilms and Healthcare-Associated Infections -- 11.4.1 Central Venous Catheters -- 11.4.2 Urinary Catheters -- 11.4.3 Ventilator-Associated Pneumonia and Endotracheal Tubes -- 11.4.4 Surgical Site Infection -- 11.4.5 Mechanical Heart Valves -- 11.4.6 Contact Lenses -- 11.4.7 Orthopedic Implants -- 11.4.8 Dental Implants -- 11.4.9 Breast Implants -- 11.5 Detection and Diagnosis of Bacterial Biofilms on Medical Devices -- 11.6 Preventive Measures for Biofilm Control and Future Perspectives -- 11.7 Conclusion -- References -- 12 Biofilm-mediated Gastrointestinal Diseases -- 12.1 Introduction -- 12.2 Esophagus -- 12.2.1 Gastroesophageal Reflux Disease and Barret's Esophagus -- 12.2.2 Carcinoma of the Esophagus -- 12.3 Stomach -- 12.3.1 Helicobacter pylori Infection. , 12.4 Intestines -- 12.4.1 Foodborne Bacterial Disease and Biofilm -- 12.4.2 Clostridium Difficile -- 12.4.3 Inflammatory Bowel Disease -- 12.4.4 Irritable Bowel Syndrome -- 12.4.5 Colorectal Malignancy -- References -- 13 Biofilm-Mediated Urinary Tract Infections -- 13.1 Infections in Urinary Tract -- 13.2 Pathogenesis of Biofilm-Mediated UTIs -- 13.2.1 Role of Biofilms in Recurrent UTIs -- 13.2.2 Role of Biofilm in ABU -- 13.2.3 Role of Biofilms in Catheter-Associated Infections -- 13.3 Microbial Factors Contributing to Biofilm Formation in Urinary Tract -- 13.3.1 Escherichia coli and Urinary Tract Infections -- 13.3.2 Proteus mirabilis and Urinary Tract Infections -- 13.3.3 Klebsiella pneumoniae and Urinary Tract Infections -- 13.3.4 Pseudomonas aeruginosa and Urinary Tract Infections -- 13.3.5 Miscellaneous Microorganisms and Urinary Tract Infections -- 13.4 Treatment and Prevention of Biofilm-Mediated UTIs -- 13.4.1 Antimicrobial Treatment of Biofilms -- 13.4.2 Newer Strategies -- 13.5 Future Prospects -- 13.5.1 Bladder Model -- 13.5.2 Urinary Tract Model -- 13.5.3 CAUTI Model -- 13.5.4 Meatus Model -- References -- 14 Biofilm-Mediated Skin Infections -- 14.1 Introduction -- 14.2 Role of Biofilm in Skin Infection -- 14.3 Biofilm Formation and Cell-to-Cell Communication -- 14.4 Pathogenesis and Types of Skin Infection Caused by Biofilms -- 14.4.1 Rosacea -- 14.4.2 Acne Vulgaris -- 14.4.3 Atopic Dermatitis -- 14.4.4 Cellulitis, Erythema Nosodum, and Erysipelas -- 14.4.5 Onychomycosis -- 14.4.6 Furuncles and Impetigo -- 14.4.7 Staphylococcal Scalded Skin Syndrome -- 14.4.8 Miliaria -- 14.4.9 Necrotizing Fasciitis -- 14.4.10 Pseudomonas Infections of the Skin -- 14.4.11 Paronychia -- 14.4.12 Chronic Non-healing Ulcers -- 14.4.13 Other Biofilm-Related Skin Infections -- 14.5 Conclusion -- References. , 15 Approaches Towards Microbial Biofilm Disruption by Natural Bioactive Agents.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...