GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (2)
  • Copernicus Publications  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2019-01-02
    Description: Subglacial hydrology plays a key role in many glaciological processes, including ice dynamics via the modulation of basal sliding. Owing to the lack of an overarching theory, however, a variety of model approximations exist to represent the subglacial drainage system. The Subglacial Hydrology Model Intercomparison Project (SHMIP) provides a set of synthetic experiments to compare existing and future models. We present the results from 13 participating models with a focus on effective pressure and discharge. For many applications (e.g. steady states and annual variations, low input scenarios) a simple model, such as an inefficient-system-only model, a flowline or lumped model, or a porous-layer model provides results comparable to those of more complex models. However, when studying short term (e.g. diurnal) variations of the water pressure, the use of a two-dimensional model incorporating physical representations of both efficient and inefficient drainage systems yields results that are significantly different from those of simpler models and should be preferentially applied. The results also emphasise the role of water storage in the response of water pressure to transient recharge. Finally, we find that the localisation of moulins has a limited impact except in regions of sparse moulin density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3EGU General Assembly 2020 | Sharing Geoscience Online, Online, 2020-05-04-2020-05-08Copernicus Publications
    Publication Date: 2020-05-11
    Description: The onset and high upstream ice surface velocities of the North East Greenland Ice Stream (NEGIS) are not yet well reproducible in ice sheet models. A major uncertainty remains the understanding of basal sliding and a parameterization of basal conditions. In this study, we assess the slow-flowing part of the NEGIS in a systematic analysis of the basal conditions and investigate the increased ice flow. We analyze the spectral basal roughness in correlation with basal return power from an airborne radar survey with AWIs ultra-wideband radar system in 2018 and compare our results with current ice flow geometry and ice surface flow. We observe a roughness anisotropy where the ice stream widens, indicating a change from a smooth and soft bed to a harder bedrock as well as the evolution of elongated subglacial landforms. In addition, at the upstream part of the NEGIS we find a clear zoning of the bedrock return power, indicating an increased water content at the base of the ice stream. At the downstream part, we observe an increased bedrock return power throughout the entire width of the ice stream and outside its margins, indicating enhanced melting and the distribution of basal water beyond the shear zones.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Journal of Glaciology, Cambridge University Press, 63(239), pp. 556-564, ISSN: 0022-1430
    Publication Date: 2017-07-27
    Description: Ice-stream dynamics are strongly controlled by processes taking place at the ice/bed interface where subglacial water both lubricates the base and saturates any existing, underlying sediment. Large parts of the former Eurasian ice sheet were underlain by thick sequences of soft, marine sediments and many areas are imprinted with geomorphological features indicative of fast flow and wet basal conditions. Here, we study the effect of subglacial water on past Eurasian ice-sheet dynamics by incorporating a thin-film model of basal water flow into the ice-sheet model SICOPOLIS and use it to better represent flow in temperate areas. The adjunction of subglacial hydrology results in a smaller ice-sheet building up over time and generally faster ice velocities, which consequently reduces the total area fraction of temperate basal ice and ice streaming areas. Minima in the hydraulic pressure potential, governing water flow, are used as indicators for potential locations of past subglacial lakes and a probability distribution of lake existence is presented based on estimated lake depth and longevity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...