GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cambridge Univ. Press  (1)
  • Wiley  (1)
  • 1
    Publikationsdatum: 2020-07-27
    Beschreibung: Non-ribosomal peptide synthetases are complex multimodular biosynthetic machines that assemble various important and medically relevant peptide antibiotics. An interesting subgroup comprises the cyclodepsipeptide synthetases from fungi synthesizing cyclohexa- and cyclo-octadepsipeptides with antibacterial, anthelmintic, insecticidal, and anticancer properties; some are marketed drugs. We exploit the modularity of these highly homologous synthetases by fusing the hydroxy-acid-activating module of PF1022 synthetase with the amino-acid-activating modules of enniatin and beauvericin synthetase, thus yielding novel hybrid synthetases. The artificial synthetases expressed in Escherichia coli and the fungus Aspergillus niger yielded new cyclodepsipeptides, thus paving the way for the exploration of these derivatives for their bioactivity.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-05-04
    Beschreibung: Compound-specific radiocarbon (14C) dating often requires working with small samples of 〈 100 µg carbon (µgC). This makes the radiocarbon dates of biomarker compounds very sensitive to biases caused by extraneous carbon of unknown composition, a procedural blank, which is introduced to the samples during the steps necessary to prepare a sample for radiocarbon analysis by accelerator mass spectrometry (i.e., isolating single compounds from a heterogeneous mixture, combustion, gas purification and graphitization). Reporting accurate radiocarbon dates thus requires a correction for the procedural blank. We present our approach to assess the fraction modern carbon (F14C) and the mass of the procedural blanks introduced during the preparation procedures of lipid biomarkers (i.e. n-alkanoic acids) and lignin phenols. We isolated differently sized aliquots (6–151 µgC) of n-alkanoic acids and lignin phenols obtained from standard materials with known F14C values. Each compound class was extracted from two standard materials (one fossil, one modern) and purified using the same procedures as for natural samples of unknown F14C. There is an inverse linear relationship between the measured F14C values of the processed aliquots and their mass, which suggests constant contamination during processing of individual samples. We use Bayesian methods to fit linear regression lines between F14C and 1/mass for the fossil and modern standards. The intersection points of these lines are used to infer F14Cblank and mblank and their associated uncertainties. We estimate 4.88 ± 0.69 μgC of procedural blank with F14C of 0.714 ± 0.077 for n-alkanoic acids, and 0.90 ± 0.23 μgC of procedural blank with F14C of 0.813 ± 0.155 for lignin phenols. These F14Cblank and mblank can be used to correct AMS results of lipid and lignin samples by isotopic mass balance. This method may serve as a standardized procedure for blank assessment in small-scale radiocarbon analysis.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...