GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Scientific Publications
    Molecular microbiology 17 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The phase-variable PilC proteins of pathogenic Neisseria species have recently been implicated in both assembly and cellular adherence functions of the type 4 pili of these pathogens. We describe here the cloning of full-length pilC1 and pilC2 genes and the complete sequencing of the pilC2 gene of Neisseria gonorrhoeae MS11. Sequential inactivation of both genes by gene replacement in piliated (P+) variants of N. gonorrhoeae MS11 led initially to a non-piliated (P−) phenotype; however, spontaneous P+ variants could be derived from some pilC1,2 double mutants which produced morphologically intact pili. Purified pili from pilC1,2 mutants revealed no detectable PilC protein. Instead, a novel protein about 70 kDa in size appeared in the pili preparations of P+ mutants; this protein exhibited no immunological cross-reactivity with PilC1 or PilC2. We propose that this novel factor replaces the function of PilC in pilus biogenesis. Using isogenic N. gonorrhoeae strains which produce identical PilE (pilin) proteins we demonstrate that pili associated with the 70 kDa protein do not confer gonococcal adherence to human epithelial cells, in contrast to pili assembled in the presence of PilC1 or PilC2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Scientific Publications
    Molecular microbiology 17 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pathogenic Neisseria species, the causative agents of gonorrhoea and bacterial meningitis, encode a family of polymorphic exo-proteins which are autoproteolytically processed into several distinct extracellular components, including an IgA1 protease and an α-protein. IgA1 protease, a putative virulence determinant, is a sequence-specific endopeptidase known to cleave human IgA1, but additional target proteins have been postulated. The physical linkage of IgA1 protease and a-protein suggests a functional relationship of both precursor components. Previous work has shown that α-protein is essential neither for extracellular transport nor for the proteolytic activity of IgA1 protease. Intriguingly, α-proteins carry amino acid sequences reminiscent of nuclear location signals of viral and eukaryotic proteins. Here we demonstrate the functionality of these nuclear location signal sequences in transfected eukaryotic cells. Chimeric α-proteins show nuclear transport and selectively associate with nucleolar structures. More importantly, native purified α-proteins are capable of entering certain human primary cells from the exterior via an endocytotic route and accumulate in the nuclei. The neisserial α-proteins share several features with eukaryotic transcription factors, such as the formation of dimers via a heptad repeat sequence. We propose a role for a-proteins in the regulation of host-cell functions. As the α-proteins are covalently connected with IgA1 protease they may also serve as carriers for the IgA1 protease into human cells where additional proteolytic targets may exist. Neisseria meningitidis, which locally colonizes the nasopharyngeal mucosa of many human individuals without apparently causing symptoms, secretes this nucleus-targeted factor in large quantities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-26
    Description: Modeling sub-canopy elevation is an important step in the processing of waveform lidar data to measure three dimensional forest structure. Here, we present a methodology based on high resolution discrete-return lidar (DRL) to correct the ground elevation derived from large-footprint Laser Vegetation Imaging Sensor (LVIS) and to improve measurement of forest structure. We use data acquired over Barro Colorado Island, Panama by LVIS large-footprint lidar (LFL) in 1998 and DRL in 2009. The study found an average vertical difference of 28.7 cm between 98,040 LVIS last-return points and the discrete-return lidar ground surface across the island. The majority (82.3%) of all LVIS points matched discrete return elevations to 2 m or less. Using a multi-step process, the LVIS last-return data is filtered using an iterative approach, expanding window filter to identify outlier points which are not part of the ground surface, as well as applying vertical corrections based on terrain slope within the individual LVIS footprints. The results of the experiment demonstrate that LFL ground surfaces can be effectively filtered using methods adapted from discrete-return lidar point filtering, reducing the average vertical error by 15 cm and reducing the variance in LVIS last-return data by 70 cm. The filters also reduced the largest vertical estimations caused by sensor saturation in the upper reaches of the forest canopy by 14.35 m, which improve forest canopy structure measurement by increasing accuracy in the sub-canopy digital elevation model.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...