GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berlin, Heidelberg :Springer Berlin / Heidelberg,  (2)
  • The American Society for Biochemistry and Molecular Biology (ASBMB)  (2)
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (286 pages)
    Edition: 1st ed.
    ISBN: 9783662484470
    DDC: 681.111
    Language: English
    Note: Intro -- Preface -- Contents -- 1 A Sketch of Ancient Western Astronomy -- 1.1 Historical Development of Western Astronomy -- 1.1.1 Egyptian Civilization -- 1.1.2 Mesopotamian Civilization -- 1.1.3 Aegean Civilization -- 1.1.3.1 Minoan and Mycenaean Civilization -- 1.1.3.2 Dark Age -- 1.1.3.3 Classical Age -- 1.1.3.4 Ionia School -- 1.1.3.5 Pythagoras School -- 1.1.3.6 Plato School -- 1.1.3.7 Hellenistic Age -- 1.2 Astronomical Cycles and Calendars -- 1.2.1 Egyptian Calendar -- 1.2.2 Metonic Cycle -- 1.2.3 Callippic Cycle -- 1.2.4 Saros Cycle -- 1.2.5 Exeligmos Cycle -- 1.3 Ancient Astronomical Theories -- 1.3.1 Solar Theory -- 1.3.2 Lunar Theory -- 1.3.3 Planetary Theory -- 1.4 Remarks -- References -- 2 Ancient Astronomical Instruments -- 2.1 Classifications Based on Functions -- 2.1.1 Observation Application -- 2.1.2 Measuring Position and Distance Application -- 2.1.3 Measuring Time Application -- 2.1.4 Computing Application -- 2.1.5 Demonstration Application -- 2.2 Jacob's Staff -- 2.3 Astrolabe -- 2.4 Sundial -- 2.5 Calendrical Device -- 2.5.1 Astrolabe with Calendrical Gearing -- 2.5.2 Sundial with Calendrical Gearing -- 2.6 Planetarium, Astrarium, and Astronomical Clock -- 2.7 Orrery -- 2.8 Comparisons of Astronomical Instruments -- 2.9 Remarks -- References -- 3 Amazing Discovery of Archaeology -- 3.1 Origination and Process of the Discovery -- 3.1.1 Historical Background of Salvage -- 3.1.2 Story of the Antikythera Finding -- 3.2 Introduction of the Excavations -- 3.3 Known Antikythera Astronomical Device -- 3.3.1 Front Plate -- 3.3.2 Back Plate -- 3.3.3 Display Pointers -- 3.3.3.1 Axial Rotation -- 3.3.3.2 Radial Rotation -- 3.3.3.3 Axial Rotation and Radial Sliding -- 3.3.4 Interior Structure of Mechanisms -- 3.4 Relative Historical Background and Records -- 3.5 Remarks -- References -- 4 Modern Reconstruction Research. , 4.1 Early Mentions -- 4.2 Reconstruction Work by Price -- 4.3 Reconstruction Work by Edmund and Morgan -- 4.4 Reconstruction Work by Wright -- 4.5 Reconstruction Work by Freeth et al. -- 4.6 Others' Research After AD 2000 -- References -- 5 Reconstruction Design Methodology -- 5.1 Reconstruction Research -- 5.2 Reconstruction Design Methodology -- 5.2.1 Design Specifications -- 5.2.2 Generalized Chains -- 5.2.3 Specialized Chains -- 5.2.4 Reconstruction Designs -- 5.3 Historical Archives of Antikythera Device -- 5.3.1 Detected Evidence -- 5.3.2 Decoded Information -- 5.3.3 Ancient Astronomy -- 5.3.4 Ancient Astronomical Instruments -- 5.3.5 Modern Kinematic and Mechanism Analyses -- 5.4 Reconstruction Research by Yan and Lin -- 5.4.1 Concepts of Mechanical Designs -- 5.4.1.1 Mechanical Members -- Link or Kinematic Link (KL) -- Gear (KG) -- 5.4.1.2 Joints -- Revolute Joint (JR) -- Pin-in-Slot Joint (JA) -- Gear Joint () -- 5.4.1.3 Degrees of Freedom -- 5.4.1.4 Topological Structure -- 5.4.2 Date Subsystem -- 5.4.3 Eclipse Prediction Subsystem -- 5.4.4 Calendrical Subsystem -- 5.4.5 Lunar Subsystem -- 5.4.6 Solar Subsystem -- 5.4.7 Planetary Subsystem -- 5.4.8 Summary -- 5.5 Comparisons Among Different Reconstruction Researches -- 5.5.1 Comparison with Price's Design -- 5.5.2 Comparison with Edmund and Morgan's Design -- 5.5.3 Comparison with Wright's Design -- 5.5.4 Comparison with the Design of Freeth et al. -- 5.6 Remarks -- References -- 6 Reconstruction Designs of the Calendrical Subsystem -- 6.1 Historical Archives of the Calendrical Subsystem -- 6.2 Design Process of the Calendrical Subsystem -- 6.2.1 Design Specifications -- 6.2.2 Generalized Chains -- 6.2.3 Specialized Chains -- 6.2.3.1 Ground Link (Member 1) -- 6.2.3.2 Callippic Cycle Link (Member 5) -- 6.2.3.3 Olympiad Cycle Link (Member 4) -- 6.2.3.4 Input Link (Member 2). , 6.2.3.5 Metonic Cycle Link (Member 3) -- 6.2.3.6 Transmission Link (Link 6) -- 6.2.4 Reconstruction Designs -- 6.2.4.1 Tooth Calculation of the Feasible Designs -- Feasible Reconstruction Design of Fig. a -- Feasible Reconstruction Design of Fig. b -- 6.3 Remarks -- References -- 7 Reconstruction Designs of the Lunar Subsystem -- 7.1 Historical Archives of the Lunar Subsystem -- 7.1.1 Kinematic Analysis of the Lunar Theory -- 7.1.2 Kinematic Analysis of Epicyclic Gear Trains -- 7.2 Design Process of the Lunar Subsystem -- 7.2.1 Design Specifications -- 7.2.2 Generalized Chains -- 7.2.3 Specialized Chains -- 7.2.3.1 Pin-in-Slot Device (Members 3, 5, and 6, and Joint JA) -- 7.2.3.2 Anomalistic Link (Member 4) -- 7.2.3.3 Ground Link (Member 1) -- 7.2.3.4 Sidereal Link and Output Link (Members 2 and 7) -- 7.2.3.5 Revolute Joints (Joints JR) -- 7.2.3.6 Gear Joints (JG) -- 7.2.4 Reconstruction Designs -- 7.3 Remarks -- References -- 8 Reconstruction Designs of the Solar Subsystem -- 8.1 Historical Archives of the Solar Subsystem -- 8.1.1 Possible Arrangements of the Driving Power -- 8.1.2 Kinematic Analysis of the Solar Theory -- 8.1.3 Eccentric System of the Solar Motion -- 8.1.4 Epicyclic System of the Solar Motion -- 8.1.4.1 Four-Bar Mechanism with 5 Joints -- 8.1.4.2 Five-Bar Mechanism with 7 Joints -- 8.2 Design Process of the Solar Subsystem -- 8.2.1 Type 1 Design of the Solar Subsystem -- 8.2.2 Type 2 Design of the Solar Subsystem -- 8.2.3 Type 3 Design of the Solar Subsystem -- 8.2.3.1 Ground Link (Member 1) -- 8.2.3.2 Input Link (Member 2) -- 8.2.3.3 Output Link (Member 3) -- 8.2.3.4 Transmission Links (Members 4 and 5) -- 8.2.3.5 Pin-in-Slot Joint (Joint JA) -- 8.2.3.6 Revolute Joints (Joint JR) -- 8.2.3.7 Gear Joints (Joint JG) -- 8.3 Remarks -- References -- 9 Reconstruction Designs of the Planetary Subsystem. , 9.1 Historical Archives of the Planetary Subsystem -- 9.1.1 Type 1 Design: Mechanism with One Gear Joint -- 9.1.2 Type 2 Design: Mechanism with Two Gear Joints -- 9.1.2.1 All Planet Gears Are Adjacent to Each Other by a Gear Joint -- 9.1.2.2 Two Planet Gears Are Adjacent to Each Other by a Pin-in-Slot Joint -- 9.2 Design Process of the Planetary Subsystem -- 9.2.1 Type 1 Design of the Planetary Subsystem -- 9.2.2 Type 2 Design of the Planetary Subsystem -- 9.2.2.1 Ground Link (Member 1) -- 9.2.2.2 Output Link (Member 3) -- 9.2.2.3 Input Link (Member 2) -- 9.2.2.4 Transmission Links (Members 4 and 5) -- 9.2.2.5 Pin-in-Slot Joint (Joint JA) -- 9.2.2.6 Gear Joints (Joint JG) -- 9.2.2.7 Revolute Joints (Joint JR) -- 9.3 Remarks -- References -- 10 Reconstruction Designs of the Moon Phase Display Device -- 10.1 Historical Archives of the Moon Phase Display Device -- 10.1.1 Related Evidence and Available Designs -- 10.1.2 Possible Driving Power Arrangements -- 10.1.3 Possible Design Types -- 10.2 Design Process of the Moon Phase Display Device -- 10.2.1 Example 1: Ordinary Gear Trains -- 10.2.2 Example 2: Epicyclic Gear Trains with 1-DOF -- 10.2.3 Example 3: Epicyclic Gear Trains with 2-DOF -- References -- 11 Assembly Work and Models -- 11.1 Complete Interior Mechanisms -- 11.1.1 Assembly Constraints of the Lost Mechanisms -- 11.1.1.1 Driving Power of Lost Mechanisms -- 11.1.1.2 Gear Sizes -- 11.1.1.3 Types of Planets -- 11.1.1.4 Epicyclic System of Superior Planets -- 11.1.2 Assembly Work -- 11.2 3D Reconstruction Model -- 11.2.1 Tooth Calculation -- 11.2.1.1 Calendrical Subsystem -- 11.2.1.2 Solar Subsystem -- 11.2.1.3 Planetary Subsystem -- 11.2.2 Detail Designs of Gears -- 11.2.3 Space Arrangement -- 11.2.4 Simulation Model -- References -- Appendix A All 48 Feasible Designs of CompleteInterior Mechanisms -- Appendix B Detailed Design of Model 9. , Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Machine learning -- Congresses. ; Cybernetics -- Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1128 pages)
    Edition: 1st ed.
    ISBN: 9783540335856
    Series Statement: Lecture Notes in Computer Science Series ; v.3930
    DDC: 006.31
    Language: English
    Note: Intro -- Preface -- Organization -- Table of Contents -- Author Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-25
    Description: Tumors depend on their microenvironment for sustained growth, invasion, and metastasis. In this environment, endothelial cells (ECs) are an important stromal cell type interacting with malignant cells to facilitate tumor angiogenesis and cancer cell extravasation. Of note, lysosomal acid lipase (LAL) deficiency facilitates melanoma growth and metastasis. ECs from LAL-deficient (lal−/−) mice possess enhanced proliferation, migration, and permeability of inflammatory cells by activating the mammalian target of rapamycin (mTOR) pathway. Here we report that lal−/− ECs facilitated in vivo tumor angiogenesis, growth, and metastasis, largely by stimulating tumor cell proliferation, migration, adhesion, and transendothelial migration via increased expression of IL-6 and monocyte chemoattractant protein 1 (MCP-1). This prompted us to look for lysosomal proteins that are involved in lal−/− EC dysfunctions. We found that lal−/− ECs displayed increased expression of Rab7, a late endosome/lysosome-associated small GTPase. Moreover, Rab7 and mTOR were co-increased and co-localized to lysosomes and physically interacted in lal−/− ECs. Rab7 inhibition reversed lal−/− EC dysfunctions, including decreasing their enhanced migration and permeability of tumor-stimulatory myeloid cells, and suppressed EC-mediated stimulation of in vitro tumor cell transmigration, proliferation, and migration and in vivo tumor growth and metastasis. Finally, Rab7 inhibition reduced overproduction of reactive oxygen species and increased IL-6 and MCP-1 secretion in lal−/− ECs. Our results indicate that metabolic reprogramming resulting from LAL deficiency enhances the ability of ECs to stimulate tumor cell proliferation and metastasis through stimulation of lysosome-anchored Rab7 activity.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-29
    Description: Activation of hepatic stellate cells (HSCs) is a critical step in the development of liver fibrosis. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerols (TAGs), cholesteryl esters, and retinyl esters (REs). We previously provided evidence for the presence of two distinct LD pools, a preexisting and a dynamic LD pool. Here we investigate the mechanisms of neutral lipid metabolism in the preexisting LD pool. To investigate the involvement of lysosomal degradation of neutral lipids, we studied the effect of lalistat, a specific lysosomal acid lipase (LAL/Lipa) inhibitor on LD degradation in HSCs during activation in vitro. The LAL inhibitor increased the levels of TAG, cholesteryl ester, and RE in both rat and mouse HSCs. Lalistat was less potent in inhibiting the degradation of newly synthesized TAG species as compared with a more general lipase inhibitor orlistat. Lalistat also induced the presence of RE-containing LDs in an acidic compartment. However, targeted deletion of the Lipa gene in mice decreased the liver levels of RE, most likely as the result of a gradual disappearance of HSCs in livers of Lipa−/− mice. Lalistat partially inhibited the induction of activation marker α-smooth muscle actin (α-SMA) in rat and mouse HSCs. Our data suggest that LAL/Lipa is involved in the degradation of a specific preexisting pool of LDs and that inhibition of this pathway attenuates HSC activation.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...