GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: BMJ, BMJ
    Abstract: Axial spondyloarthritis (axSpA) is an inflammatory disease of the axial skeleton associated with significant pain and disability. Previously, the diagnosis of ankylosing spondylitis required advanced changes on plain radiographs of the sacroiliac joints. Classification criteria released in 2009, however, identified a subset of patients, under the age of 45, with back pain for more than three months in the absence of radiographic sacroiliitis who were classified as axSpA based on a positive magnetic resonance imaging or HLAB27 positivity and specific clinical features. This subgroup was labeled non-radiographic (nr)-axSpA. These patients, compared with those identified by the older New York criteria, contained a larger percentage of women and demonstrated less structural damage. However, their clinical manifestations and response to biologics were similar to radiographic axSpA. The discovery of the interleukin (IL) IL-23/IL-17 pathway revealed key molecules involved in the pathophysiology of axSpA. This discovery propelled the generation of antibodies directed toward IL-17A, which are highly effective and demonstrate treatment responses in axSpA that are similar to those observed with anti-TNF agents. The finding that agents that block IL-23 were not effective in axSpA came as a surprise and the potential underlying mechanisms underlying this lack of response are discussed. New agents with dual inhibition of the IL-17A and F isoforms and some oral small molecule agents that target the Jak-STAT pathway, have also shown efficacy in axSpA.
    Type of Medium: Online Resource
    ISSN: 1756-1833
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 1479799-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of the Rheumatic Diseases, BMJ, Vol. 74, No. 6 ( 2015-06), p. 1284-1292
    Abstract: Psoriatic arthritis (PsA) is a chronic inflammatory disease characterised by clinical features that include bone loss and epidermal hyperplasia. Aberrant cytokine expression has been linked to joint and skin pathology; however, it is unclear which cytokines are critical for disease initiation. Interleukin 17A (IL-17A) participates in many pathological immune responses; however, its role in PsA has not been fully elucidated. Objective To determine the role of IL-17A in epidermal hyperplasia and bone destruction associated with psoriatic arthritis. Design An in vivo gene transfer approach was used to investigate the role of IL-17A in animal models of inflammatory (collagen-induced arthritis) and non-inflammatory (receptor activator of NF-κB ligand (RANKL)-gene transfer) bone loss. Results IL-17A gene transfer induced the expansion of IL-17RA + CD11b + Gr1 low osteoclast precursors and a concomitant elevation of biomarkers indicative of bone resorption. This occurred at a time preceding noticeable joint inflammation, suggesting that IL-17A is critical for the induction of pathological bone resorption through direct activation of osteoclast precursors. Moreover, IL-17A induced a second myeloid population CD11b + Gr1 high neutrophil-like cells, which was associated with cutaneous pathology including epidermal hyperplasia, parakeratosis and Munro's microabscesses formation. Conclusions Collectively, these data support that IL-17A can play a key role in the pathogenesis of inflammation-associated arthritis and/or skin disease, as observed in PsA.
    Type of Medium: Online Resource
    ISSN: 0003-4967 , 1468-2060
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2015
    detail.hit.zdb_id: 1481557-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...