GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 32 (2001), S. 51-93 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Most of our knowledge of biodiversity and its causes in the deep-sea benthos derives from regional-scale sampling studies of the macrofauna. Improved sampling methods and the expansion of investigations into a wide variety of habitats have revolutionized our understanding of the deep sea. Local species diversity shows clear geographic variation on spatial scales of 100-1000 km. Recent sampling programs have revealed unexpected complexity in community structure at the landscape level that is associated with large-scale oceanographic processes and their environmental consequences. We review the relationships between variation in local species diversity and the regional-scale phenomena of boundary constraints, gradients of productivity, sediment heterogeneity, oxygen availability, hydrodynamic regimes, and catastrophic physical disturbance. We present a conceptual model of how these interdependent environmental factors shape regional-scale variation in local diversity. Local communities in the deep sea may be composed of species that exist as metapopulations whose regional distribution depends on a balance among global-scale, landscape-scale, and small-scale dynamics. Environmental gradients may form geographic patterns of diversity by influencing local processes such as predation, resource partitioning, competitive exclusion, and facilitation that determine species coexistence. The measurement of deep-sea species diversity remains a vital issue in comparing geographic patterns and evaluating their potential causes. Recent assessments of diversity using species accumulation curves with randomly pooled samples confirm the often-disputed claim that the deep sea supports higher diversity than the continental shelf. However, more intensive quantitative sampling is required to fully characterize the diversity of deep-sea sediments, the most extensive habitat on Earth. Once considered to be constant, spatially uniform, and isolated, deep-sea sediments are now recognized as a dynamic, richly textured environment that is inextricably linked to the global biosphere. Regional studies of the last two decades provide the empirical background necessary to formulate and test specific hypotheses of causality by controlled sampling designs and experimental approaches.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 229-260.
    Publication Date: 2020-06-11
    Description: Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...