GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society of Hematology  (6)
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 886-886
    Kurzfassung: Abstract 886 The diagnosis acute myeloid leukemia (AML) describes a heterogeneous group of myeloid stem cell disorders. Based on current concepts of disease development, the combination of at least two mutations is necessary for transformation, typically affecting transcription factors (e.g. RUNX1) blocking normal differentiation and growth promoting genes, e.g. receptor tyrosine kinases like FLT3. This model has been challenged by more recent results of genome-wide mutational analysis, which revealed a typical load of 8–12 mutations affecting several additional pathways, e.g. epigenetic regulation (DNMT3A, TET2 or IDH1). However, the sequence of acquisition and the individual impact of these mutations are largely unknown because these aspects are difficult to study. Here we describe a unique case of a donor cell leukemia giving unexpected insights into the development of AML in man. Case report and methods: In May 2004, a 51-year old male (P1) with an 8-year history of B-CLL received G-CSF mobilized peripheral blood stem cells after dose reduced conditioning from his HLA-identical sister, because he had relapsed after several lines of conventional therapy. He rapidly engrafted and showed complete donor chimerism (DC). In February 2012, he was admitted to the hospital with elevated WBC counts and circulating blasts. Bone marrow (BM) aspiration and morphology revealed an infiltration of the BM with 94% myeloid blasts (FAB M1). Cytogenetic and standard molecular assessment showed a normal female karyotype and NPM1 and FLT3-ITD mutations. STR-based analysis also revealed a persistent, 100% DC, thus the diagnosis of a donor cell AML was made, which developed almost 8 years after SCT. Interestingly, his sister, the donor (P2) had been also diagnosed with AML (FAB M2, cytogenetics: 47, XX,+8; NPM1 and FLT3-ITD neg.) only 3 months before her brother in Nov. 2011. Currently, P1 is in CR after re-SCT from an unrelated donor, whereas P2 relapsed and is scheduled for SCT after reinduction. Since DNA material of both individuals was available and due to this unique constellation, we performed next generation sequencing of whole exome enriched material using an Illumina HiSEQ 2000 platform after obtaining informed consent to compare both AMLs. Identified mutations were then confirmed using conventional Sanger sequencing and traced back by 454-based amplicon deep sequencing in a pre-SCT sample of the donor/P2 as well as several post SCT samples collected from P1 for the documentation of chimerism. Results: Comparison of the two AML-samples with a pre-SCT donor sample and a sample taken after 1.SCT as well as the HG19 and dbSNP135 releases revealed more than 100 unknown SNPs. Confirmation focused on cancer related changes or genes in critical pathways. In P1, in addition to the known NPM1 and FLT3-ITD mutations, we found somatic changes in CLCA1, PKHD1 and TET2, whereas in P2, we identified and confirmed somatic mutations in CDCA2, CBL, IDH1, NEK9 and PHF6. In addition, a typical DNMT3A R882C mutation was found in both leukemias. Interestingly, this mutation was also detectable by conventional Sanger sequencing in the pre-SCT sample of P2, but not in P2-germline DNA derived from buccal swaps. As shown in the figure, the 454-amplicon sequencing revealed a gradual increase of the TET2 (R1167G) mutational load over time in P1, and showed also that this mutation was present at low levels (4%) already in the pre-SCT sample of P2, but not in her final AML. FLT3-ITD and NPM1 mutations were detectable only in the AML-sample of P1, but not at any prior time points or in P2. Conclusions: These data indicate that mutations like the DNMT3A R882C can be present in normal appearing hematopoiesis at high levels years before the development of AML. The presence of the mutation in the absence of overt leukemia or MDS indicates that these mutations might not have a direct effect on the development of the disease, but favor the development of aberrant clones which then acquire additional changes in a latency phase. Other mutations (e.g. TET2) might give a small clonal advantage, but only the final acquisition of abnormalities like NPM1 and FLT3-ITD might transform this latency phase into a rapidly proliferating status, consistent with the “driver” status of these aberrations. The divergent mutational pattern found in the two AMLs emerging from the same DNMT3A-starting clone points to the high clonal diversity which might develop even within a single individual. Disclosures: Thiede: AgenDix GmbH: Employment, Equity Ownership.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2012
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1408-1408
    Kurzfassung: Next generation sequencing (NGS) has been extensively used to characterize the molecular background in patients with AML. Several novel recurrent alterations have been discovered, such as the common mutations in the IDH-genes and in DNMT3A. We aimed to use this technology to characterize patients failing induction chemotherapy. To better understand mechanisms of resistance, we applied whole exome based NGS screening in younger AML patients failing conventional induction chemotherapy. In a group of 29 patients, two patients showed mutations in cMYC exon 2. Similar mutations have been reported in diffuse large B-cell lymphoma (DLBCL), Burkitt 's lymphoma and aggressive HIV associated lymphomas. These alterations cluster in the aminoterminal part of the protein and lead to stabilization of the MYC protein, MYC activation and evasion of TP53 mediated tumor surveillance. MYC mutations have only occasionally been described in AML before, but amplification of cMYC or activation of this important oncoprotein via other cellular pathways has been linked to aggressive disease and resistance to treatment. So, in order to better understand the prevalence and the prognostic implications of cMYC mutations in adult AML, we screened a set of more than 1200 patients with AML and advanced MDS for the presence of mutations in the cMYC- gene. Patients and Methods: We retrospectively characterized genomic DNA samples taken at the time of first diagnosis from 1281 patients with AML treated in the AML96 protocol of the Study Alliance Leukemia (SAL). Since all reported mutations cluster in cMYC exon 2, this region was analyzed using conventional Sanger sequencing. In cMYC-mutated patients, a set of 54 genes (Trusight Myeloid Panel) covering commonly mutated genes in myeloid disease was analyzed for alterations using next generation sequencing (NGS) on a MiSEQ instrument. Results: An exon 2 mutation in cMYC was found in 14/1281 (1.1%) of the patients, all mutations clustered in the the MbI-domain between codons 57 and 62, with codon P59 being the most frequently mutated position. Analysis of the allelic burden indicated that the mutations occurred early in the disease. Correlation with clinical, cytogenetic and molecular data showed, that the mutations were predominantly found in patients with normal or intermediate risk karyotype, but they were also seen in good risk and high risk patients. Strikingly, 9 of 14 patients (77%) showed an NPM1-mutation (p=.004) and 7 of 14 (50%) were FLT3-ITD mutated (p=.02). The extended NGS-characterization did not reveal any additional specific secondary alterations associated with this mutation. MYC mutations were found in all FAB-subtypes excluding FAB M0, no significant differences were seen for other clinical variables, including age, sex, white blood cell and bone marrow blast counts. In univariate as well as multivariate analysis, patients with cMYC mutations did not show any significant difference in the rate of complete remission (CR), the event free and the overall survival, even when restricted to subgroups such as patients with normal karyotype or with NPM1 mutations. Conclusions: This study showed that mutations in cMYC exon 2 are a rare but recurrent abnormality in AML. The mutations are significantly enriched in patients with mutant NPM1 and FLT3-ITD, but based on our analysis, they seem not to have any prognostic implications. Disclosures Platzbecker: Boehringer: Research Funding; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding. Thiede:AgenDix GmBH: Equity Ownership; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2015
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 91, No. 1 ( 1998-01-01), p. 64-74
    Kurzfassung: Mammalian 15-lipoxygenases, which have been implicated in the differentiation of hematopoietic cells are commonly regarded as cytosolic enzymes. Studying the interaction of the purified rabbit reticulocyte 15-lipoxygenase with various types of biomembranes, we found that the enzyme binds to biomembranes when calcium is present in the incubation mixture. Under these conditions, an oxidation of the membrane lipids was observed. The membrane binding was reversible and led to an increase in the fatty acid oxygenase activity of the enzyme. To find out whether such a membrane binding also occurs in vivo, we investigated the intracellular localization of the enzyme in stimulated and resting hematopoietic cells by immunoelectron microscopy, cell fractionation studies and activity assays. In rabbit reticulocytes, the 15-lipoxygenase was localized in the cytosol, but also bound to intracellular membranes. This membrane binding was also reversible and the detection of specific lipoxygenase products in the membrane lipids indicated the in vivo activity of the enzyme on endogenous substrates. Immunoelectron microscopy showed that in interleukin-4 –treated monocytes, the 15-lipoxygenase was localized in the cytosol, but also at the inner side of the plasma membrane and at the cytosolic side of intracellular vesicles. Here again, cell fractionation studies confirmed the in vivo membrane binding of the enzyme. In human eosinophils, which constitutively express the 15-lipoxygenase, the membrane bound share of the enzyme was augmented when the cells were stimulated with calcium ionophore. Only under these conditions, specific lipoxygenase products were detected in the membrane lipids. These data suggest that in hematopoietic cells the cytosolic 15-lipoxygenase translocates reversibly to the cellular membranes. This translocation, which increases the fatty acid oxygenase activity of the enzyme, is calcium-dependent, but may not require a special docking protein.
    Materialart: Online-Ressource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 1998
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Blood, American Society of Hematology, Vol. 91, No. 1 ( 1998-01-01), p. 64-74
    Kurzfassung: Mammalian 15-lipoxygenases, which have been implicated in the differentiation of hematopoietic cells are commonly regarded as cytosolic enzymes. Studying the interaction of the purified rabbit reticulocyte 15-lipoxygenase with various types of biomembranes, we found that the enzyme binds to biomembranes when calcium is present in the incubation mixture. Under these conditions, an oxidation of the membrane lipids was observed. The membrane binding was reversible and led to an increase in the fatty acid oxygenase activity of the enzyme. To find out whether such a membrane binding also occurs in vivo, we investigated the intracellular localization of the enzyme in stimulated and resting hematopoietic cells by immunoelectron microscopy, cell fractionation studies and activity assays. In rabbit reticulocytes, the 15-lipoxygenase was localized in the cytosol, but also bound to intracellular membranes. This membrane binding was also reversible and the detection of specific lipoxygenase products in the membrane lipids indicated the in vivo activity of the enzyme on endogenous substrates. Immunoelectron microscopy showed that in interleukin-4 –treated monocytes, the 15-lipoxygenase was localized in the cytosol, but also at the inner side of the plasma membrane and at the cytosolic side of intracellular vesicles. Here again, cell fractionation studies confirmed the in vivo membrane binding of the enzyme. In human eosinophils, which constitutively express the 15-lipoxygenase, the membrane bound share of the enzyme was augmented when the cells were stimulated with calcium ionophore. Only under these conditions, specific lipoxygenase products were detected in the membrane lipids. These data suggest that in hematopoietic cells the cytosolic 15-lipoxygenase translocates reversibly to the cellular membranes. This translocation, which increases the fatty acid oxygenase activity of the enzyme, is calcium-dependent, but may not require a special docking protein.
    Materialart: Online-Ressource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 1998
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1035-1035
    Kurzfassung: Background Partial tandem duplication mutations of the Mixed Lineage Leukemia gene (MLL-PTD) can be found in about 10% of patients with AML, especially in patients with normal karyotype AML. The mutation generates a self-fusion within the N-terminal part of MLL and has been shown to be leukemogenic in mouse models. In patients, the presence of the mutation is associated with poor prognosis. Little is known on the molecular profile of patients with MLL-PTD and on the cooperating mutations. In order to identify accompanying molecular alterations, we performed whole exome sequencing (WES) of eight AML patients harbouring MLL-PTD mutations. Based on the observed alterations we then designed a custom amplicon panel and performed targeted resequencing in a cohort of 90 MLL-PTD mutated AML patients. Materials and Methods All patients included in this analysis were treated in prospective treatment protocols of the Study Alliance Leukemia (SAL). To enrich for malignant cells and to obtain germline reference material (T-cells), FACS sorting was performed on viable cells banked at diagnosis. After whole genome amplification of the primary DNA, whole exomes were enriched (TruSeq chemistry; Illumina), and paired-end sequenced using Illumina HiSeq2000 2x100 bp runs. Resulting data were mapped against human genome (Hg19). Only somatic single nucleotide variants (SNVs) were included in the final analysis. Based on the SNVs identified by whole exome sequencing (WES), a custom amplicon panel (TruSeq Custom Amplicon, TSCA, Illumina) for targeted resequencing was designed. The assay included either the entire coding region or mutational hot spots of 56 genes (Fig.1). In total, 700 targets were amplified in a single reaction for each patient and paired end sequenced on a MiSeq NGS system (Illumina). Paired end reads were BWA mapped against targeted regions and data analysis was done using the Sequence Pilot software package (JSI Medical Systems) with a 20% variant allele frequency (VAF) mutation calling cutoff. Only non-synonymous variants not specified as SNP in the db137 database and predicted as deleterious (Provean) were included in the final analysis. All variations were confirmed by Sanger sequencing. Results WES of eight MLL-PTD (7/8 FLT3-ITD negativ) patients revealed a total 490 SNVs (range 13-254 per patient). Most frequently mutated genes were DNMT3A, IDH1/2 and TET2. Somatic mutations were also found in genes rarely mutated in AML, such as ATM, GNAS, TET1 and EP300. Based on the WES-data, 90 MLL-PTD patients were screend for a panel of 56 genes using the TSCA assay, which revealed in total of 169 mutations. 18 genes were not found to be mutated and in 8 patients, no co-occurring mutations were identified. Due bad assay performance EP300, EZH1, JAK3, MLL2, MLL3 and NOTCH1 were excluded from the data analysis. Here again, the most frequently mutated genes were DNMT3A (34.4%), IDH1 (20.0%), IDH2R140 (18.9%), IDH2R172 (7.9%), TET2 (16.7%) and FLT3 (11.3%). Mutations were less frequently found in RUNX1 (8.9%) and ASXL1, SMC1A, U2AF1 (5.6% each) (Fig. 1). In addition to these known genes, most prevalent mutations were found in ATM (8.9%) as well as DNMT3B and TET1 (4.4% each). Overall, we oberserved a low frequency of mutations in typical class 1 genes such as NRAS, KRAS and FLT3, which was lower than reported in the TCGA data set. Conclusions This analysis in a large set of patients with MLL-PTD mutations did not reveal any new and specific individual mutation present in patients with this alteration. Instead, our finding of a very high prevalence of alterations in epigenetic regulator genes, found in more than 85% of patients with MLL-PTD, strongly argues for a particular disease biology in these patients. These findings might also implicate that treatment based on demethylating agents or histone-deacetylase inhibitors might be especially attractive in patients with MLL-PTD. Figure 1: Figure 1:. Distribution of mutations in MLL-PTD patients The assay included either the entire coding region or mutational hot spots of the following 56 genes; ASXL1, ATM, BCOR, BRAF, CBL, DDR1, DNMT1, DNMT3A, DNMT3B, EIF4A2, EP300, ETV6, EZH1, EZH2, FLT3, GATA1, GATA2, GNAS, HRAS, IDH1, IDH2, JAK1, JAK2, JAK3, KDM4A, KDM5A, KDM5C, KDM6A, KIT, KRAS, MET, MLL, MLL2, MLL3, NOTCH1, NOTCH4, NPM1, NRAS, PDGFRA, PDGFRB, PHF6, PTEN, PTPN11, RAD21, RUNX1, SF3A1, SF3B4, SMC1A, SMC3, SMC4, TET1, TET2, TP53, U2AF1 and WT1. Disclosures Thiede: AgenDix GmbH: Equity Ownership, Research Funding; Illumina: Research Support, Research Support Other.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2549-2549
    Kurzfassung: The PIM family of serine/threonine kinases (PIM1, PIM2, PIM3) are important regulators of signal transduction that phosphorylate proteins essential for cell proliferation, survival, and apoptosis. The PIM kinases are constitutively active and broadly expressed in multiple tissues and up-regulated in various malignancies. We report the discovery of a novel fusion transcript encoding the kinase domain of PIM3 fused to SCO2, a cytochrome c oxidase assembly protein. In transcript sequencing (RNA Seq) of 68 pediatric AML cases, PIM3-SCO2 fusion transcript was computationally identified and experimentally verified in index cases and studied in an independent cohort of pediatric patients with AML. RNA-Seq performed on the Illumina HiSeq in 68 diagnostic specimens from children with AML treated on COG clinical trials. Sequence reads were mapped to human genome using Novoalign. Four computational methods including Defuse, TophatFusion, FusionMap, and Snowshoes-FTD, were utilized to identify fusion transcripts and after filtering to eliminate false positives, fusions were selected based on observation in 2 or more fusion methods and presence in chimerDB. PIM3-SCO2 was identified as an in-frame fusion transcript in 3 cases with Inv(16) and subsequently verified by RT-PCR and Sanger sequencing. Frequency validation was performed by semi-quantitative expression analysis of PIM3-SCO2 expression levels in 235 AML diagnostic specimens as well as 6 normal bone marrow (NBM) controls. PIM3-SCO2 fusion protein was assessed by Western blot on whole cell lysates from cases with the fusion transcript. After verification of the fusion, available whole genome sequencing data in matching cases was interrogated and failed to demonstrate genomic counterpart to this fusion transcript, suggesting that this fusion may be the result of transcriptional read-through; also called transcription-induced chimera (TIC). Such fusion transcripts are generated when genes in proximity on a genome strand are spliced together to generate a chimeric product. Frequency validation studies in 235 diagnostic specimens from COG AAML0531 demonstrated that PIM3-SCO2 fusion transcript was highly prevalent in AML and expressed in 187 of the 235 cases of AML (80%) with variable prevalence across different cytogenetic cohorts, with prevalence of 87% in CBF, 56% in MLL, 79% in normal karyotype, and 70% in those with “other” karyotypes (p 〈 0.001) Further evaluation of the expression level of the fusion product demonstrated significant variability among AML patients. Given the high prevalence of fusion transcript in AML specimens, we evaluated the expression of PIM3-SCO2 transcript in normal marrow as well as in non-hematopoietic tissues. PIM3-SCO2 fusion was detected at low levels in whole normal marrow, but was absent in T cells as well non-hematopoietic tissues including cerebellum, cortex, thymus, skeletal muscle, and tongue. Protein lysates from various tissues and in patients with PIM3-SCO2 fusions was interrogated for the presence of PIM3 protein variant using an antibody directed at the amino terminal end of PIM3 protein. Normal PIM3 protein of 36 kDa was detected in HEK-293 kidney derived cell line and in Jurkat cells; however, in patient specimens with the fusion transcript, presence of a 50 kDa protein, which is the expected protein product of the fusion transcript, was confirmed. Although the appropriate PIM3 protein product was observed in non hematopoietic tissues, only the fusion product was observed in hematopoietic cells, including normal marrow, suggesting that the fusion product may be the only translated product of PIM3 in normal hematopoiesis. Gene expression profiling of 226 Dx and 35 relapse samples was performed. Compared to normal marrow, PIM3 exhibited significantly higher expression at diagnosis (p=0.04) and at relapse (p=0.022). In addition, PIM3 related signaling genes were also overrepresented on pathway analysis in Dx and Relapse samples vs. normal bone marrow. Our data show that a novel PIM3-SCO2 fusion transcript, which is likely a transcription-induced chimera of the two gene transcripts, may be involved in normal hematopoietic development whose expression is highly dysregulated in AML. Expression level of this chimeric product is highly variable in childhood AML, is associated with cytogenetic and molecular subsets, and may identify a potential target for therapeutic intervention. Disclosures: No relevant conflicts of interest to declare.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2013
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...