GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society of Hematology  (4)
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 646-646
    Kurzfassung: Introduction Multiple myeloma (MM) is an incurable malignant plasma cell disease with the highest incidence occurring at 65-70 years of age while 10% of patients are diagnosed below 55 years of age. The International Myeloma Working Group recently proposed new risk stratification standards for MM patients: high-risk (HR), standard (SR) and low-risk (LR) groups (Leukemia 2014, 28, 269−77). Although a median overall survival of LR patients is 〉 10 years from the diagnosis, new drugs and therapeutic innovations are urgently needed for HR patients (20%) who have a median overall survival of only two years. To identify new treatment options for MM patients, we compared ex vivo drug sensitivity data from primary CD138+ cells to standard risk stratification markers. Ex vivo responses indicated a number of investigational drugs as potential novel options for HR MM patients with links to risk markers. Methods Bone marrow aspirates were collected from newly diagnosed (n=14) and relapsed/refractory (n=21) MM patients. Cytogenetics were determined by fluorescence in situ hybridization (FISH) and the patients stratified based on the presence or absence of adverse FISH markers (t(4;14) and 17p del). Plasma cells (CD138+) were enriched from freshly isolated bone marrow samples and exome sequencing performed using DNA extracted from the CD138+ cells and matched skin biopsies. Ex vivo drug sensitivity was assessed by measuring the viability of the cells after 3-day incubation with 306 different oncology drugs in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Scientific Reports 2014, 4, 5193) and select sensitivities determined by comparing results to healthy bone marrow cells. Based on drug sensitivities, the patients were classified in four different groups (sensitive, moderately sensitive, resistant and highly resistant). Results Of the 35 patients included in this study, 11 were classified as HR (31%) and 24 as SR/LR (69%). In the HR group 6/11 (55%) had t(4;14) and 5/11 patients (45%) had 17p13 del. In the SR/LR group common abnormalities included 13 monosomy/13q del (10/24), 1q gain (10/24) and K/NRAS mutation (11/24). Within the HR group, other co-occurring abnormalities included 1q gain (9/11), 13 monosomy/13q del (6/11), K/NRAS mutation (5/11), and TP53 mutation (2/11). Based on overall ex vivo drug sensitivity profiles of all patients, the majority of HR patients were classified as moderately sensitive (8/11; 73%) while SR/LR patients had diverse responses from sensitive to highly resistant. In the HR group, the highest select sensitivities were to BH3 mimetics and PI3K/mTOR inhibitors. While the t(4;14) is predicted to lead to upregulation and increased activity of the FGFR3, which could be targeted by FGFR inhibitors, none of the t(4;14) samples showed sensitivity to these drugs. However, with the exception of one t(4;14) sample, the rest all showed good sensitivity to dual PI3K/mTOR inhibitors, but not to rapalogs, suggesting that inhibition of PI3K and the mTORC1/2 complexes is required to inhibit t(4;14) cell growth rather than mTORC1 alone. Of the 17p del patients, 3/5 were classified as moderately sensitive, 1/5 sensitive and 1/5 highly resistant based on ex vivo drug response of CD138+ cells. All showed select sensitivity to BH3 mimetics/BCL2 inhibitors (navitoclax/ABT-263 and venetoclax/ABT-199/GDC-0199), while response to other drugs varied. Therefore, blocking cell survival signaling is likely essential for this group of HR MM patients. Conclusion By assessing the ex vivo sensitivity of primary plasma cells to a large collection of oncology drugs and comparing these data to standard risk stratification markers for MM, we have been able to identify potential new treatment options for high risk MM patients including dual PI3K/mTOR and BCL2- inhibitors. Although a larger cohort of patients is required to support the correlation between specific drug sensitivities and risk markers, these preliminary data indicate that currently used risk markers may be useful to predict the use of novel treatments. Disclosures Silvennoinen: Janssen-Cilag: Research Funding; Celgene: Research Funding; Janssen-Cilag: Honoraria; Sanofi: Honoraria; Celgene: Honoraria. Porkka:BMS: Honoraria; BMS: Research Funding; Novartis: Honoraria; Novartis: Research Funding; Pfizer: Research Funding. Heckman:Celgene: Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3006-3006
    Kurzfassung: Introduction Response to treatment for multiple myeloma (MM) patients is variable and often unpredictable, which may be attributed to the heterogeneous genomic landscape of the disease. However, the effect of recurrent molecular alterations on drug response is unclear. To address this, we systematically profiled 50 samples from 43 patients to assess ex vivo sensitivity to 308 anti-cancer drugs including standard of care and investigational drugs, with results correlated to genomic alterations. Our results reveal novel insights about patient stratification, therapies for high-risk (HR) patients, signaling pathway aberrations and ex-vivo-in-vivo correlation. Methods Bone marrow (BM) aspirates (n=50) were collected from MM patients (newly diagnosed n=17; relapsed/refractory n=33) and healthy individuals (n=8). CD138+ plasma cells were enriched by Ficoll separation followed by immunomagnetic bead selection. Cells were screened against 308 oncology drugs tested in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Yadav et al, Sci Reports, 2014). MM selective responses were determined by comparing data from MM patients with those of healthy BM cells. Clustering of drug sensitivity profiles was performed using unsupervised hierarchical ward-linkage clustering with Spearman and Manhattan distance measures of drug and sample profiles. Somatic alterations were identified by exome sequencing of DNA from CD138+ cells and skin biopsies from each patient, while cytogenetics were determined by fluorescence in situ hybridization. Results Comparison of the ex vivo chemosensitive profiles of plasma cells resulted in stratification of patients into four distinct subgroups that were highly sensitive (Group I), sensitive (Group II), resistant (Group III) or highly resistant (Group IV) to the panel of drugs tested. Many of the drug responses were specific for CD138+ cells with little effect on CD138- cells from the same patient or healthy BM controls. We generated a drug activity profile for the individual drugs correlating sensitivity to recurrent alterations including mutations to KRAS, DIS3, NRAS, TP53, FAM46C, and cytogenetic alterations del(17p), t(4;14), t(14;16), t(11;14), t(14;20), +1q and -13. Cells from HR patients with del(17p) exhibited the most resistant profiles (enriched in Groups III and IV), but were sensitive to some drugs including HDAC and BCL2 inhibitors. Samples from patients with t(4;14) were primarily in Group II and very sensitive to IMiDs, proteasome inhibitors and several targeted drugs. Along with known recurrently mutated genes in myeloma, somatic mutations were identified in genes involved in several critical signaling pathways including DNA damage response, IGF1R-PI3K-AKT, MAPK, glucocorticoid receptor signaling and NF-κB signaling pathways. The predicted impact of these mutations on the activity of the pathways often corresponded to the drug response. For example, all samples bearing NF1 (DSS=21±7.9) and 67% with NRAS (DSS=15±4.35) mutations showed higher sensitivity to MEK inhibitors compared to healthy controls (DSS=5±.21). However, sensitivity was less predictable for KRAS mutants with modest response only in 47% samples (DSS=7±2.14) . One sample bearing the activating V600E mutation to BRAF showed no sensitivity to vemurafenib, which otherwise has good activity towards V600E mutated melanoma and hairy-cell leukemia. Comparison of the chemosensitive subgroups with survival showed patients in Groups I and IV had high relapse rate and poor overall survival. The ex vivo drug sensitivity results were used to decide treatment for three HR patients with results showing good ex vivo -in vivo correlation. Summary Our initial results suggest that ex vivo drug testing and molecular profiling of MM patients aids stratification. Grouping of patients based on their ex vivo chemosensitive profile proved extremely informative to predict clinical phenotype and identify responders from non-responders. While some molecular markers could be used to predict drug response, others were less predictive. Nevertheless, ex vivo drug testing identified active drugs, particularly for HR and relapsed/refractory patients, and is a powerful method to determine treatment for this group of patients. Disclosures Silvennoinen: Genzyme: Honoraria; Sanofi: Honoraria; Janssen: Research Funding; Celgene: Research Funding; Research Committee of the Kuopio University Hospital Catchment Area for State Research Funding, project 5101424, Kuopio, Finland: Research Funding; Amgen: Consultancy, Honoraria. Porkka:Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Novartis: Honoraria; Pfizer: Honoraria. Heckman:Celgene: Honoraria, Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2015
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2046-2046
    Kurzfassung: Introduction New drugs have improved survival for multiple myeloma (MM) patients, however, patient outcome remains highly variable, unpredictable and often very poor. To identify novel treatments and potential biomarkers, we applied high throughput ex vivo drug sensitivity testing combined with exome and transcriptome sequencing to samples collected from newly diagnosed and relapsed MM patients. Integration of results from the different platforms indicated several oncogenic signaling pathways driving drug response and highlighted the importance of a multi-targeted approach for treatment. Methods Bone marrow (BM) aspirates (n=48) were collected from MM patients (newly diagnosed n=14; relapsed/refractory n=26) and healthy individuals (n=8). CD138+ plasma cells were enriched by Ficoll separation followed by immunomagnetic bead selection. Cells were screened against 306 oncology drugs with the drugs tested in a 10,000-fold concentration range. Drug sensitivity scores were calculated based on the normalized area under the dose response curve (Yadav et al, Sci Reports, 2014). Importantly, MM selective responses were determined by comparing data from MM patients with those of healthy BM cells. Clustering of drug sensitivity profiles was performed using unsupervised hierarchical ward-linkage clustering with Spearman and Manhattan distance measures of drug and sample profiles. Somatic mutations were identified by exome sequencing of DNA from CD138+ cells and skin biopies from each patient, while gene expression profiles were derived from RNA sequencing of CD138+ cells. Results Cluster analysis of drug response profiles segregated the samples into four MM specific groups (Figure). Group I patients (n=12) were highly sensitive to many drugs, including several signal transduction inhibitors such as those targeting PI3K-AKT, MAPK and IGF pathways, as well as HSP90 and BCL2 inhibitors plus epigenetic/chromatin modifiers such as BET and HDAC inhibitors. Group II (n=15) showed a more modest response profile and were moderately sensitive to signal transduction inhibitors and epigenetic modifiers. Group III (n=9) were largely insensitive to most drugs in the panel except for BCL2 and proteasome inhibitors, while group IV (n=3) were resistant to all drugs except BCL2 inhibitors. Many samples were selectively sensitive to navitoclax (55%), dual PI3K/mTOR inhibitors (45%) and aminopeptidase inhibitors (20%), which had little effect on healthy control or MM CD138- cells. Only 33% of the samples responded to glucocorticoids. The majority of samples including healthy BM controls were sensitive to proteasome and CDK inhibitors, suggesting low selective cytotoxicity. However, drug sensitivity profiles of healthy control and CD138- cell populations were distinct from MM CD138+ samples indicating that observed CD138+ drug responses were specific for malignant plasma cells. In addition, we observed that drugs with overlapping target profiles tended to cluster together, indicating sample responses were similar to related drugs. Diagnostic and relapse samples were spread across the different response groups. Samples with mutations to genes involved in PI3K and NF-κB signaling tended to cluster in group I, while most samples with t(4;14) fell in Group II. Samples with RAS mutations were present in all response groups and no correlation with MEK inhibitor sensitivity was observed. 17p deletion samples were also found in all response groups, however, those with additional TP53 mutation tended to have increased drug sensitivity. Summary Our results indicate that PI3K/mTOR, MAPK, IGF1R, NF-κB and cell survival (e.g. BCL2, BCLXL) signaling are important pathways mediating MM ex vivo drug response. This matched with genomic and transcriptomic data, which identified alterations of genes involved in these pathways. Although additional work is needed to correlate ex vivo drug sensitivity with in vivo treatment response, our initial results suggest the possibility that MM patients could be subjected to stratified treatment based on combined ex vivo drug testing and molecular profiling. In addition, these results highlight the multiple signaling pathways active in MM and emphasize the need for improved combination strategies for treatment. Figure: Subgrouping of MM patient samples (I-IV) based on selective drug response profiles. H/D/R denotes healthy, diagnostic and relapse, respectively. Figure:. Subgrouping of MM patient samples (I-IV) based on selective drug response profiles. H/D/R denotes healthy, diagnostic and relapse, respectively. Disclosures Silvennoinen: Research Funding of Finland Government, Research Funding from Janssen-cilag, research funding from Celgene: Research Funding; Janssen-Cilag, Sanofi, Celgene: Honoraria. Wennerberg:Pfizer: Research Funding. Kallioniemi:Medisapiens: Consultancy, Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding. Heckman:Celgene: Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Blood, American Society of Hematology, Vol. 125, No. 4 ( 2015-01-22), p. 639-648
    Kurzfassung: Germline activating STAT3 mutations were detected in 3 patients with autoimmunity, hypogammaglobulinemia, and mycobacterial disease. T-cell lymphoproliferation, deficiency of regulatory and helper 17 T cells, natural killer cells, dendritic cells, and eosinophils were common.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2015
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...