GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Physiological Society  (2)
  • 1
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 308, No. 1 ( 2015-01-01), p. L1-L10
    Kurzfassung: Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation.
    Materialart: Online-Ressource
    ISSN: 1040-0605 , 1522-1504
    Sprache: Englisch
    Verlag: American Physiological Society
    Publikationsdatum: 2015
    ZDB Id: 1477300-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Physiological Society ; 2015
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 309, No. 10 ( 2015-11-15), p. L1219-L1228
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 309, No. 10 ( 2015-11-15), p. L1219-L1228
    Kurzfassung: Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) ligand, is a novel dilator of small airways in mouse precision cut lung slices (PCLS). In this study, relaxation to RGZ and β-adrenoceptor agonists were compared in trachea from naïve mice and guinea pigs and trachea and PCLS from a mouse model of chronic allergic airways disease (AAD). Airways were precontracted with methacholine before addition of PPARγ ligands [RGZ, ciglitazone (CGZ), or 15-deoxy- Δ12,14 -prostaglandin J 2 (15-deoxy-PGJ 2 )] or β-adrenoceptor agonists (isoprenaline and salbutamol). The effects of T0070907 and GW9662 (PPARγ antagonists) or epithelial removal on relaxation were assessed. Changes in force of trachea an d lumen area in PCLS were measured using preparations from saline-challenged mice and mice sensitized ( days 0 and 14) and challenged with ovalbumin (3 times/wk, 6 wk). RGZ and CGZ elicited complete relaxation with greater efficacy than β-adrenoceptor agonists in mouse airways but not guinea pig trachea, while 15-deoxy-PGJ 2 did not mediate bronchodilation. Relaxation to RGZ was not prevented by T0070907 or GW9662 or by epithelial removal. RGZ-induced relaxation was preserved in the trachea and increased in PCLS after ovalbumin-challenge. Although RGZ was less potent than β-adrenoceptor agonists, its effects were additive with salbutamol and isoprenaline and only RGZ maintained potency and full efficacy in maximally contracted airways or after allergen challenge. Acute PPARγ-independent, epithelial-independent airway relaxation to RGZ is resistant to functional antagonism and maintained in both trachea and PCLS from a model of chronic AAD. These novel efficacious actions of RGZ support its therapeutic potential in asthma when responsiveness to β-adrenoceptor agonists is limited.
    Materialart: Online-Ressource
    ISSN: 1040-0605 , 1522-1504
    Sprache: Englisch
    Verlag: American Physiological Society
    Publikationsdatum: 2015
    ZDB Id: 1477300-4
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...