GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (13)
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 95, No. 3 ( 2014-03-01), p. ES61-ES65
    Materialart: Online-Ressource
    ISSN: 1520-0477 , 0003-0007
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2014
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2017
    In:  Bulletin of the American Meteorological Society Vol. 98, No. 11 ( 2017-11-01), p. 2411-2428
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 98, No. 11 ( 2017-11-01), p. 2411-2428
    Kurzfassung: Over 150 years of investigations into global terrestrial precipitation are revisited to reveal how researchers estimated annual means from in situ observations before the age of digitization. After introducing early regional efforts to measure precipitation, the pioneering estimates of terrestrial mean precipitation from the late nineteenth and early twentieth centuries are compared to successive estimates, including those using the latest gridded precipitation datasets available. The investigation reveals that the range of the early estimates is comparable to the interannual variation in terrestrial mean precipitation derived from the latest Climatic Research Unit (CRU) dataset. In-depth revisions of the estimates were infrequent up to the 1970s, due in part to difficulty obtaining and maintaining up-to-date datasets with global coverage. This point is illustrated in a “family tree” that identifies the key publications that subsequent authors referenced, sometimes decades after the original publication. Significant efforts to collate global observations facilitated new investigations and improved data exchange, for example, in the International Hydrological Decade (1965–74) and following the establishment of the Global Telecommunication System under the World Weather Watch Programme of the World Meteorological Organization. Also in the 1970s were the first attempts to adjust in situ observations on a global scale to account for gauge undercatch, and this had a noticeable impact on mean annual estimates. There remains no single satisfactory approach to gauge bias adjustment. Echoing the repeated message of past researchers, today’s authors cite poor spatial coverage, temporal inhomogeneity, and inadequate sharing of in situ observations as the key obstacles to obtaining more accurate estimates of terrestrial mean precipitation.
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2017
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Bulletin of the American Meteorological Society, American Meteorological Society, ( 2013-11-18), p. 131118120357000-
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2013
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 16 ( 2013-08-15), p. 5879-5896
    Kurzfassung: Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy ( & gt;60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California's mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)] , although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days ( & gt;60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2013
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 20 ( 2015-10-15), p. 8283-8285
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 20 ( 2015-10-15), p. 8283-8285
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2017
    In:  Monthly Weather Review Vol. 145, No. 9 ( 2017-09), p. 3563-3580
    In: Monthly Weather Review, American Meteorological Society, Vol. 145, No. 9 ( 2017-09), p. 3563-3580
    Kurzfassung: There is a large amount of documented weather information all over the world, including Asia (e.g., old diaries, log books, etc.). The ultimate goal of this study is to reconstruct historical weather by deriving total cloud cover (TCC) from historically documented weather records and to assimilate them using a general circulation model and a data assimilation scheme. Two experiments are performed using the Global Spectral Model and an ensemble Kalman filter: 1) a reanalysis data experiment and 2) a ground observation data experiment, for 18 synthesized observation stations in Japan according to the Historical Weather Data Base. By assuming that weather records can be converted into three TCC categories, the synthetic observation data of daily TCC are created from reanalysis data, with a large observation error of 30%, and by classifying ground observation data into the three categories. Compared with the simulation without assimilation of any observation, the results of the reanalysis data experiment show improvements, not only in TCC but also in other meteorological variables (e.g., humidity, precipitation, precipitable water, wind, and pressure). For specific humidity at 2 m above the surface, the monthly averaged root-mean-square error is reduced by 18%–22% downstream of the assimilated region. The results of the ground observation data experiment are not as successful as a result of additional error sources, indicating the bias needs to be handled correctly. By showing improvements with the loosely classified cloud information, the feasibility of the developed model to be applied for historical weather reconstruction is confirmed.
    Materialart: Online-Ressource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2017
    ZDB Id: 2033056-X
    ZDB Id: 202616-8
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2021
    In:  Journal of Hydrometeorology ( 2021-08-25)
    In: Journal of Hydrometeorology, American Meteorological Society, ( 2021-08-25)
    Kurzfassung: Moisture sources and their corresponding temperature and humidity are important for explosive extratropical cyclones’ development regarding latent heating. To clarify the water origins and moisture-transport processes within an explosive cyclone, we simulated an explosive cyclone migrating poleward across the Sea of Japan on November 30, 2014, by using an isotopic regional spectral model. In the cyclone’s center area, a replacement of water origins occurred during the cyclone’s development. During the early stage, the warm conveyor belt (WCB) transported large amounts of moisture from the East China Sea and Kuroshio into the cyclone’s inner region. While in the deepening stage, the cold conveyor belt (CCB) and dry intrusion (DI) conveyed more moisture from the Northwest Pacific Ocean and the Sea of Japan, respectively. Compared with the contribution of local moisture, that of remote moisture was dominant in the cyclone’s center area. Regarding the water origins of condensation within the frontal system in the deepening stage, the Northwest Pacific Ocean vapors, principally transported by the CCB, contributed 35.5% of the condensation in the western warm front. The East China Sea and Kuroshio moisture, conveyed by the WCB, accounted for 32.4% of the condensation in the cold and eastern warm fronts. In addition, condensation from the Sea of Japan, which was mainly triggered by the DI and induced by the topography, occurred on the west coast of the mainland of Japan and near the cyclone center. The spatial distribution of the isotopic composition in condensation and water vapor also supports the water-origin results.
    Materialart: Online-Ressource
    ISSN: 1525-755X , 1525-7541
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2021
    ZDB Id: 2042176-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2008
    In:  Monthly Weather Review Vol. 136, No. 8 ( 2008-08-01), p. 2983-2998
    In: Monthly Weather Review, American Meteorological Society, Vol. 136, No. 8 ( 2008-08-01), p. 2983-2998
    Kurzfassung: With the aim of producing higher-resolution global reanalysis datasets from coarse-resolution reanalysis, a global version of the dynamical downscaling using a global spectral model is developed. A variant of spectral nudging, the modified form of scale-selective bias correction developed for regional models is adopted. The method includes 1) nudging of temperature in addition to the zonal and meridional components of winds, 2) nudging to the perturbation field rather than to the perturbation tendency, and 3) no nudging and correction of the humidity. The downscaling experiment was performed using a T248L28 (about 50-km resolution) global model, driven by the so-called R-2 reanalysis (T62L28 resolution, or about 200-km resolution) during 2001. Evaluation with high-resolution observations showed that the monthly averaged global surface temperature and daily variation of precipitation were much improved. Over North America, surface wind speed and temperature are much better, and over Japan, the diurnal pattern of surface temperature is much improved, as are wind speed and precipitation, but not humidity. Three well-known synoptic/subsynoptic-scale weather patterns over the United States, Europe, and Antarctica were shown to become more realistic. This study suggests that the global downscaling is a viable and economical method for obtaining high-resolution reanalysis without rerunning a very expensive high-resolution full data assimilation.
    Materialart: Online-Ressource
    ISSN: 1520-0493 , 0027-0644
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2008
    ZDB Id: 2033056-X
    ZDB Id: 202616-8
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Monthly Weather Review ( 2023-08-02)
    In: Monthly Weather Review, American Meteorological Society, ( 2023-08-02)
    Kurzfassung: Old descriptive diaries are important sources of daily weather conditions before modern instrumental measurements were available. A previous study demonstrated the potential of reconstructing historical weather at a high temporal resolution by assimilating cloud cover converted from descriptive diaries. However, cloud cover often exhibits a non-Gaussian distribution, which violates the basic assumptions of most data assimilation schemes. In this study, we applied a Gaussian transformation (GT) approach to cloud cover data assimilation and conducted observing system simulation experiments (OSSEs) using 20 observation points over Japan. We performed experiments to assimilate cloud cover with large observational errors using the Global Spectral Model (GSM) and a local ensemble transform Kalman filter (LETKF). Without GT, meridional wind and temperature exhibited deteriorations in the lower troposphere compared with the experiment with no observations. In contrast, GT reduced the 2-month root-mean-square errors (RMSEs) by 5–15% throughout the troposphere for wind, temperature and specific humidity fields. Significant improvements include zonal wind at 500 hPa and temperature at 850 hPa with 6.4 and 7.3% improvements by GT, respectively, compared with the experiment without GT. We further demonstrate that the additional GT application to the precipitation background field improves precipitation estimation by 12.2%, with pronounced improvements over regions with monthly precipitation of less than 150 mm. We also explored the impact of cloud cover GT on a global scale and confirmed improvements extending from around the observation sites. Our results demonstrate the potential of GT in high-resolution historical weather reconstruction using old descriptive diaries.
    Materialart: Online-Ressource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 2033056-X
    ZDB Id: 202616-8
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Weather and Forecasting, American Meteorological Society, Vol. 30, No. 2 ( 2015-04-01), p. 424-445
    Kurzfassung: As a basic form of climate patterns, the diurnal cycle of precipitation (DCP) can provide a key test bed for model reliability and development. In this study, the DCP over West Africa was simulated by the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) during the monsoon season (April–September) of 2005. Three convective parameterization schemes (CPSs), single-layer simplified Arakawa–Schubert (SAS), multilayer relaxed Arakawa–Schubert (RAS), and new Kain–Fritsch (KF2), were evaluated at two horizontal resolutions (20 and 10 km). The Benin mesoscale site was singled out for additional investigation of resolution effects. Harmonic analysis was used to characterize the phase and amplitude of the DCP. Compared to satellite observations, the overall spatial distributions of amplitude were well captured at regional scales. The RSM properly reproduced the observed late afternoon peak over land and the early morning peak over ocean. Nevertheless, the peak time was early. Sensitivity experiments of CPSs showed similar spatial patterns of rainfall totals among the schemes; CPSs mainly affected the amplitude of the diurnal cycle, while the phase was not significantly shifted. There is no clear optimal pairing of resolution and CPS. However, it is found that the sensitivity of DCP to CPSs and resolution varies with the partitioning between convective and stratiform, which implies that appropriate partitioning needs to be considered for future development of CPSs in global or regional climate models.
    Materialart: Online-Ressource
    ISSN: 0882-8156 , 1520-0434
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 2025194-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...