GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (8)
Materialart
Verlag/Herausgeber
  • American Meteorological Society  (8)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 8 ( 2015-04-15), p. 3152-3170
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 8 ( 2015-04-15), p. 3152-3170
    Kurzfassung: Attribution studies conclude that it is extremely likely that most observed global- and continental-scale surface air temperature (SAT) warming since 1950 was caused by anthropogenic forcing, but some difficulties and uncertainties remain in attribution of warming in subcontinental regions and at time scales less than 50 years. This study uses global observations and CMIP5 simulations with various forcings, covering 1979–2005, and control runs to develop confidence intervals, to attribute regional trends of SAT and sea surface temperature (SST) to natural and anthropogenic causes. Observations show warming, significantly different from natural variations at the 95% confidence level, over one-third of all grid boxes, and averaged over 15 of 21 subcontinental regions and 6 of 10 ocean basins. Coupled simulations forced with all forcing factors, or greenhouse gases only, reproduce observed SST and SAT patterns. Uncoupled AMIP-like atmosphere-only (prescribed SST and atmospheric radiative forcing) simulations reproduce observed SAT patterns. All of these simulations produce consistent net downward longwave radiation patterns. Simulations with natural-only forcing simulate weak warming. Anthropogenic forcing effects are clearly detectable at the 5% significance level at global, hemispheric, and tropical scales and in nine ocean basins and 15 of 21 subcontinental land regions. Attribution results indicate that ocean warming during 1979–2005 for the globe and individual basins is well represented in the CMIP5 multimodel ensemble mean historical simulations. While land warming may occur as an indirect response to oceanic warming, increasing greenhouse gas concentrations tend to be the ultimate source of land warming in most subcontinental regions during 1979–2005.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 9 ( 2019-05-01), p. 2569-2589
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 9 ( 2019-05-01), p. 2569-2589
    Kurzfassung: The International Comprehensive Ocean–Atmosphere Dataset (ICOADS) is a cornerstone for estimating changes in sea surface temperatures (SST) over the instrumental era. Interest in determining SST changes to within 0.1°C makes detecting systematic offsets within ICOADS important. Previous studies have corrected for offsets among engine room intake, buoy, and wooden and canvas bucket measurements, as well as noted discrepancies among various other groupings of data. In this study, a systematic examination of differences in collocated bucket SST measurements from ICOADS3.0 is undertaken using a linear-mixed-effect model according to nations and more-resolved groupings. Six nations and a grouping for which nation metadata are missing, referred to as “deck 156,” together contribute 91% of all bucket measurements and have systematic offsets among one another of as much as 0.22°C. Measurements from the Netherlands and deck 156 are colder than the global average by −0.10° and −0.13°C, respectively, both at p & lt; 0.01, whereas Russian measurements are offset warm by 0.10°C at p & lt; 0.1. Furthermore, of the 31 nations whose measurements are present in more than one grouping of data (i.e., deck), 14 contain decks that show significant offsets at p & lt; 0.1, including all major collecting nations. Results are found to be robust to assumptions regarding the independence and distribution of errors as well as to influences from the diurnal cycle and spatially heterogeneous noise variance. Correction for systematic offsets among these groupings should improve the accuracy of estimated SSTs and their trends.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2019
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Journal of Climate Vol. 36, No. 7 ( 2023-04-01), p. 2205-2220
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 7 ( 2023-04-01), p. 2205-2220
    Kurzfassung: A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s involves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements. A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020. Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature variability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met Office (HadSST4) and SAT-inferred SSTs range between −1.6°C (95% confidence interval: [−1.7°, −1.4°C]) and 1.2°C ([0.8°, 1.6°C] ) across 10° × 10° grids. When further averaged along the global coastline, HadSST4 is significantly colder than SAT-inferred SSTs by 0.20°C ([0.07°, 0.35°C]) over 1900–40. These results indicate that historical SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as well as the degree to which coastal intercalibrations are informative of global trends. Significance Statement To evaluate the consistency of instrumental surface temperature estimates before the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature (SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements. When applied to historical temperature records, the model indicates significant discrepancies between inferred and observed SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical temperature archives and opportunities for further improvements.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S146-S206
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S146-S206
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Kurzfassung: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2023
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 6 ( 2016-03-15), p. 2109-2122
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 6 ( 2016-03-15), p. 2109-2122
    Kurzfassung: In this study, the authors apply a lagged maximum covariance analysis (MCA) to capture the cross-seasonal coupled patterns between the Southern Ocean sea surface temperature (SOSST) and extratropical 500-hPa geopotential height anomalies in the Southern Hemisphere, from which Niño-3.4 signals and their linear trends are removed to a certain extent. Statistically significant results show that the dominant feature of ocean–atmosphere interaction is likely the effect of atmosphere on SOSST anomalies, with a peak occurring when the atmosphere leads the SOSST by 1 month. However, the most eye-capturing phenomenon is that the austral autumn atmospheric signal, characterized by a negatively polarized Antarctic Oscillation (AAO), is significantly related to the gradual evolution of preceding SOSST anomalies, suggesting that the SOSST anomalies tend to exert an effect on the Southern Hemisphere atmospheric circulation. A regression analysis based on SOSST anomaly centers confirms these features. It is also demonstrated that the gradual evolution of changes in SOSST is mainly driven by internal atmospheric variability via surface turbulent heat flux associated with cold or warm advection and that the atmospheric circulation experiences a change from a typical positive AAO to a negative phase in this process. These findings indicate that such a long lead cross-seasonal covariance could contribute to a successful prediction of AAO-related atmospheric circulation in austral autumn from the perspective of SOSST anomalies, with lead times up to 6–7 months.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2016
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 11 ( 2021-06), p. 4585-4602
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 11 ( 2021-06), p. 4585-4602
    Kurzfassung: Most historical sea surface temperature (SST) estimates indicate warmer World War II SSTs than expected from forcing and internal climate variability. If real, this World War II warm anomaly (WW2WA) has important implications for decadal variability, but the WW2WA may also arise from incomplete corrections of biases associated with bucket and engine room intake (ERI) measurements. To better assess the origins of the WW2WA, we develop five different historical SST estimates (reconstructions R1–R5). Using uncorrected SST measurements from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) version 3.0 (R1) gives a WW2WA of 0.41°C. In contrast, using only buckets (R2) or ERI observations (R3) gives WW2WAs of 0.18° and 0.08°C, respectively, implying that uncorrected biases are the primary source of the WW2WA. We then use an extended linear-mixed-effect method to quantify systematic differences between subsets of SSTs and develop groupwise SST adjustments based on differences between pairs of nearby SST measurements. Using all measurements after applying groupwise adjustments (R4) gives a WW2WA of 0.13°C [95% confidence interval (c.i.): 0.01°–0.26°C] and indicates that U.S. and U.K. naval observations are the primary cause of the WW2WA. Finally, nighttime bucket SSTs are found to be warmer than their daytime counterparts during WW2, prompting a daytime-only reconstruction using groupwise adjustments (R5) that has a WW2WA of 0.09°C (95% c.i.: −0.01° to 0.18°C). R5 is consistent with the range of internal variability found in either the CMIP5 (95% c.i.: −0.10° to 0.10°C) or CMIP6 ensembles (95% c.i.: −0.11° to 0.10°C). These results support the hypothesis that the WW2WA is an artifact of observational biases, although further data and metadata analyses will be important for confirmation.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2021
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 18 ( 2020-09-15), p. 7735-7753
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 18 ( 2020-09-15), p. 7735-7753
    Kurzfassung: Differences in sea surface temperature (SST) biases among groups of bucket measurements in the International Comprehensive Ocean–Atmosphere Dataset, version 3.0 (ICOADS3.0), were recently identified that introduce offsets of as much as 1°C and have first-order implications for regional temperature trends. In this study, the origin of these groupwise offsets is explored through covariation between offsets and diurnal cycle amplitudes. Examination of an extended bucket model leads to expectations for offsets and amplitudes to covary in either sign, whereas misclassified engine room intake (ERI) temperatures invariably lead to negative covariance on account of ERI measurements being warmer and having a smaller diurnal amplitude. An analysis of ICOADS3.0 SST measurements that are inferred to come from buckets indicates that offsets after the 1930s primarily result from the misclassification of ERI measurements in points of five lines of evidence. 1) Prior to when ERI measurements become available in the 1930s, offset–amplitude covariance is weak and generally positive, whereas covariance is stronger and generally negative subsequently. 2) The introduction of ERI measurements in the 1930s is accompanied by a wider range of offsets and diurnal amplitudes across groups, with 3) approximately 20% of estimated diurnal amplitudes being significantly smaller than buoy and drifter observations. 4) Regressions of offsets versus amplitudes intersect independently determined end-member values of ERI measurements. 5) Offset-amplitude slopes become less negative across all regions and seasons between 1960 and 1980, when ERI temperatures were independently determined to become less warmly biased. These results highlight the importance of accurately determining measurement procedures for bias corrections and reducing uncertainty in historical SST estimates.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2020
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...