GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union (AGU)  (1)
Material
Publisher
  • American Geophysical Union (AGU)  (1)
Language
Years
  • 1
    In: Geochemistry, Geophysics, Geosystems, American Geophysical Union (AGU), Vol. 4, No. 12 ( 2003-12)
    Abstract: As part of an ongoing effort to explore the use of foraminifera as a means to assess modern and ancient methane release, we compared ambient pore water chemistry with the distribution and stable isotopic composition of living (rose Bengal stained) foraminifera in MBARI ROV Ventana tube cores taken from modern seepage areas (about 1000 m water depth) in Monterey Bay, California. Benthic foraminiferal isotopic differences between sites clearly indicate that methane‐influenced pore waters affect foraminiferal distributions and carbonate isotope geochemistry. Carbon isotope signatures of living benthic foraminifera did not conform to the very negative (−30 to −48‰), methane‐influenced carbon isotope values of the pore waters they live in. Instead, the influence of methane seep pore waters was reflected in the greater range and carbon isotopic variability of living seep foraminifera compared with published δ 13 C values of foraminifera living in nonseep habitats. It is not clear what relative influences biological, ecological, and physical factors have on the carbon isotopic signatures observed in seep foraminifera. Substantial carbon isotope differences can exist between individuals of the same seep species. For instance, δ 13 C values of living Globobulimina pacifica varied by as much as 2.9‰ between seeps within 8 km of each other, whereas δ 13 C values of living Uvigerina peregrina varied by as much as 1.95‰ within the same seep. Provided there is no diagenetic alteration of the test carbonate, isotopic results of individual seep foraminifera support the hypothesis that foraminifera can be used to assess past and present methane seepage.
    Type of Medium: Online Resource
    ISSN: 1525-2027 , 1525-2027
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 2027201-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...