GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association of Petroleum Geologists  (3)
  • 1
    Publication Date: 2021-02-08
    Description: The role of faults in petroleum systems is important especially in cases where the hydrocarbon accumulation in the prospect or field is fault-dependent. Usually, the properties of faults in petroleum systems are considered as static through time. We present a case study from the southern Halten terrace in the Norwegian Sea which highlights not only the importance of faults but also that the evolution of fault properties is key in determining the correct charge in the fields in the region. The best-fit model shows that in order to match observations the petroleum system requires at least two stages of hydrocarbon migration during which fault properties change from partially to completely sealing with respect to hydrocarbon flow across them. The most likely process that results in fault sealing is cementation due to increasing temperatures caused by the rapid burial during the Quaternary glaciations. This results in the most accurate charge of accumulations in the region while also explaining other observations such as present-day pressure compartmentalization and biodegradation. The best-fit model also implements the source rock thermal evolution based on a 2D basin model that improves the match of fluid GOR in the accumulation to the measured values. This study highlights the importance of multi-scale, multi-physics and multi-stage models in order to obtain results consistent with present day observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists
    In:  AAPG Bulletin, 92 (3). pp. 309-326.
    Publication Date: 2019-09-23
    Description: We present a generic algorithm for automating sedimentary basin reconstruction. Automation is achieved through the coupling of a two-dimensional thermotectonostratigraphic forward model to an inverse scheme that updates the model parameters until the input stratigraphy is fitted to a desired accuracy. The forward model solves for lithospheric thinning, flexural isostasy, sediment deposition, and transient heat flow. The inverse model updates the crustal- and mantle-thinning factors and paleowater depth. Both models combined allow for automated forward modeling of the structural and thermal evolution of extensional sedimentary basins. The potential and robustness of this method is demonstrated through a reconstruction case study of the northern Viking Graben in the North Sea. This reconstruction fits present stratigraphy, borehole temperatures, vitrinite reflectance data, and paleowater depth. The predictive power of the model is illustrated through the successful identification of possible targets along the transect, where the principal source rocks are in the oil and gas windows. These locations coincide well with known oil and gas occurrences. The key benefits of the presented algorithm are as follows: (1) only standard input data are required, (2) crustal- and mantle-thinning factors and paleowater depth are automatically computed, and (3) sedimentary basin reconstruction is greatly facilitated and can thus be more easily integrated into basin analysis and exploration risk assessment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists
    In:  AAPG Bulletin, 101 (10). pp. 1697-1713.
    Publication Date: 2020-02-06
    Description: Petroleum system models (PSM) result critically depend on the computed evolution of the temperature field. As PSM typically only resolve the sedimentary basin and not the entire lithosphere, it is necessary to apply a basement heat flow boundary condition inferred from well data, surface heat flow measurements, and an assumed tectonic scenario. The purpose of this paper is to assess the use of surface heat flow measurements to calibrate basin models. We show that a simple relationship between surface and basement heat flow only exists in thermal steady-state and that transient processes such as rifting and sediment deposition will lead to a decoupling. We study this relationship in extensional sedimentary basins with a 1D lithosphere-scale finite element model. The numerical model was built to capture the large-scale dynamic evolution of the lithosphere and simultaneously solve for transient thermal processes in basin evolution, such as sedimentation, compaction-driven fluid flow, and seafloor temperature variations. Our analysis shows that several corrections need to be applied when using surface heat flow information for the calibration of basement heat flow in PSM. Not doing so can lead to significant errors of up to 30-50 °C at typical petroleum reservoir and source rock depths. We further show that resolving sediment blanketing effects in basin modeling is crucial, with the thermal impact of sediment deposition being at least as important as rifting-induced basement heat flow variations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...