GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2011
    In:  Science Vol. 331, No. 6014 ( 2011-01-14), p. 156-158
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 331, No. 6014 ( 2011-01-14), p. 156-158
    Abstract: Global climatic and oceanic conditions underwent fundamental transformations after the last ice age ended about 19,000 years ago. In the North Atlantic, for example, the deglaciation was marked by major changes in the Meridional Overturning Circulation (MOC), which carries warm and highly saline surface water north to cooler regions, where it sinks and creates “deep water” that eventually cycles back to the surface. This process plays a substantial role in regulating climate and levels of atmospheric carbon dioxide (CO 2 ), and understanding how it operated in the past is important to understanding how it may influence climate in the future. On page 202 of this issue, Thornalley et al. ( 1 ) provide impressive and detailed evidence of how the North Atlantic MOC behaved after the Last Glacial Maximum (LGM), between 19,000 and 10,000 years ago. In particular, they show that the MOC experienced a series of abrupt changes that lasted from decades to centuries, and that some of the water masses involved were far older—and may have stored and released more carbon—than once believed.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2000
    In:  Science Vol. 288, No. 5474 ( 2000-06-23), p. 2198-2202
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 288, No. 5474 ( 2000-06-23), p. 2198-2202
    Abstract: A faunal record of sea-surface temperature (SST) variations off West Africa documents a series of abrupt, millennial-scale cooling events, which punctuated the Holocene warm period. These events evidently resulted from increased southward advection of cooler temperate or subpolar waters to this subtropical location or from enhanced regional upwelling. The most recent of these events was the Little Ice Age, which occurred between 1300 to 1850 A.D., when subtropical SSTs were reduced by 3° to 4°C. These events were synchronous with Holocene changes in subpolar North Atlantic SSTs, documenting a strong, in-phase link between millennial-scale variations in high- and low-latitude climate during the Holocene.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2000
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...