GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ASCE
    In:  In: Geo-Chicago 2016. Geotechnical Special Publication, 270 . ASCE, New York, pp. 235-244. ISBN 978-0-7844-8013-7
    Publication Date: 2017-03-22
    Description: Gas production from gas hydrate-bearing sediments has been attracting global interests because of its potential to meet growing energy demand. Methane (CH4) gas can be extracted from CH4 hydrates by depressurization, thermal stimulation or chemical activation. However, it has never been produced on a commercial scale and the past field trials faced premature termination due to the technical difficulties such as excessive sand flow into the well, a phenomenon known as sand production. One exception is the trial at the Ignik Sikumi, Alaska in 2012, which was conducted by chemical activation followed by depressurization. During the trial, initial sand production ceased after two weeks while CH4 gas production continued for five weeks. The mitigation of sand production is deemed attributed to mechanical or hydraulic effects through formation of CO2-rich gas hydrates. This incident has highlighted the favorable effect of CO2 hydrate formation and needs to incorporate the chemo-processes into existing thermo-hydro-mechanical formulations. This paper presents an analytical formulation to capture the coupled thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments during gas production via CO2 injection. The key features of the formulation include hydrate formation and dissociation, gas dissolution and multiphase flow for both CH4 and CO2, facilitating CH4-CO2 hydrate conversion.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...