GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (5)
  • GEOMAR  (1)
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 27 . pp. 9101-9122.
    Publication Date: 2015-11-24
    Description: A surface diurnal warm layer is diagnosed from Seaglider observations, and develops on half the days in the CINDY/DYNAMO Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (〉 80 W m−2) and low wind speed (〈 6 m s−1), and preferentially in the inactive stage of the Madden–Julian Oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending towards isothermal conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 25 (1). pp. 207-221.
    Publication Date: 2014-10-21
    Description: Antarctic Intermediate Water (AAIW) is a dominant Southern Hemisphere water mass that spreads from its formation regions just north of the Antarctic Circumpolar Current (ACC) to at least 20°S in all oceans. This study uses an isopycnal climatology constructed from Argo conductivity–temperature–depth (CTD) profile data to define the current state of the AAIW salinity minimum (its core) and thence compute anomalies of AAIW core pressure, potential temperature, salinity, and potential density since the mid-1970s from ship-based CTD profiles. The results are used to calculate maps of temporal property trends at the AAIW core, where statistically significant strong circumpolar shoaling (30–50 dbar decade−1), warming (0.05°–0.15°C decade−1), and density reductions [up to −0.03 (kg m−3) decade−1] are found. These trends are strongest just north of the ACC in the southeast Pacific and Atlantic Oceans and decrease equatorward. Salinity trends are generally small, with their sign varying regionally. Bottle data are used to extend the AAIW core potential temperature anomaly analysis back to 1925 in the Atlantic and to ~1960 elsewhere. The modern warm AAIW core conditions appear largely unprecedented in the historical record: biennially and zonally binned median AAIW core potential temperatures within each ocean basin are, with the notable exception of the subtropical South Atlantic in the 1950s–70s, 0.2–1°C colder than modern values. Zonally averaged sea surface temperature anomalies around the AAIW formation latitudes in each ocean and sectoral southern annular mode indices are used to put the AAIW core property trends and variations into context.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (1). pp. 61-76.
    Publication Date: 2019-02-01
    Description: The transport of dissolved oxygen (O2) from the surface ocean into the interior is a critical process sustaining aerobic life in mesopelagic ecosystems, but its rates and sensitivity to climate variations are poorly understood. Using a circulation model constrained to historical variability by assimilation of observations, we show that the North Pacific thermocline effectively takes up O2 primarily by expanding the area through which O2-rich mixed layer water is detrained into the thermocline. The outcrop area during the critical winter season varies in concert with the Pacific Decadal Oscillation (PDO). When the central North Pacific Ocean is in a cold phase, the winter outcrop window for the Central Mode Water class (CMW; a neutral density range of γ = 25.6 - 26.6) expands southward allowing more O2-rich surface water to enter the ocean’s interior. An increase in volume flux of water to the CMW density class is partly compensated by a reduced supply to the shallower densities of Subtropical Mode Water (γ = 24.0 - 25.5). The thermocline has become better oxygenated since the 1980s due partly to strong O2 uptake. Positive O2 anomalies appear first near the outcrop and subsequently downstream in the subtropical gyre. In contrast to the O2 variations within the ventilated thermocline, observed O2 in Intermediate Water (density range of γ = 26.7 – 27.2) shows a declining trend over the past half-century, a trend not explained by the open ocean water mass formation rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96, Special supplement (7). S157-S160.
    Publication Date: 2018-06-20
    Description: [in “State of the Climate in 2014” : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2024-02-07
    Description: The Antarctic Slope Front (ASF) is a fundamental feature of the subpolar Southern Ocean that is still poorly observed. In this study we build a statistical climatology of the temperature and salinity fields of the upper 380 m of the Antarctic margin. We use a comprehensive compilation of observational datasets including the profiles gathered by instrumented marine mammals. The mapping method consists first of a decomposition in vertical modes of the combined temperature and salinity profiles. Then the resulting principal components are optimally interpolated on a regular grid and the monthly climatological profiles are reconstructed, providing a physically plausible representation of the ocean. The ASF is located with a contour method and a gradient method applied on the temperature field, two complementary approaches that provide a complete view of the ASF structure. The front extends from the Amundsen Sea to the eastern Weddell Sea and closely tracks the continental shelf break. It is associated with a sharp temperature gradient that is stronger in winter and weaker in summer. The emergence of the front in the Amundsen and Bellingshausen sectors appears to be seasonally variable (slightly more westward in winter than in summer). Investigation of the density gradients across the shelf break indicates a winter slowdown of the baroclinic component of the Antarctic Slope Current at the near surface, in contrast with the seasonal variability of the temperature gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...