GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AIP Publishing  (5)
Materialart
Verlag/Herausgeber
  • AIP Publishing  (5)
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    In: Biomicrofluidics, AIP Publishing, Vol. 12, No. 3 ( 2018-05-01)
    Kurzfassung: Microchips that perform single cell capture, array, and identification have become powerful tools for single cell studies, which can reveal precise underlying mechanisms among bulk cell populations. However, current single cell capture and on-chip immunostaining methods consume more time and reagent than desired. To optimize this technology, we designed a novel trap structure for single cell capture, array, and release, and meanwhile an oscillatory method was used to perform rapid on-chip cell immunostaining. The trap structure array used equal distribution of lateral flow to achieve single cell array in high velocity flows and decrease the risk of clogging. A length of glass capillary with a sealed bubble was inserted into the outlet so that it could act in a manner analogous to that of a capacitor in an RC circuit. By applying one periodic air pressure to the inlet, oscillation motion was generated, which significantly enhanced the on-chip reaction efficiency. In addition, the oscillation performance could be easily regulated by changing the length of the capillary. The trapped cells could maintain their positions during oscillation; hence, they were able to be tracked in real time. Through our trap microchip, 12 μm microbeads were successfully trapped to form a microarray with a capture efficiency of ∼92.7% and 2 μm microbeads were filtered. With an optimized oscillation condition (Ppush = 0.03 MPa, f = 1 Hz, L = 3 cm), fast on-chip immunostaining was achieved with the advantages of less time (5 min) and reagent (2 μl) consumption. The effectiveness of this method was demonstrated through quantitative microbead and qualitative Caco-2 cell experiments. The device is simple, flexible, and efficient, which we believe provides a promising approach to single cell heterogeneity studies, drug screening, and clinical diagnosis.
    Materialart: Online-Ressource
    ISSN: 1932-1058
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2018
    ZDB Id: 2265444-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2013
    In:  Applied Physics Letters Vol. 102, No. 20 ( 2013-05-20)
    In: Applied Physics Letters, AIP Publishing, Vol. 102, No. 20 ( 2013-05-20)
    Kurzfassung: We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.
    Materialart: Online-Ressource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2013
    ZDB Id: 211245-0
    ZDB Id: 1469436-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2009
    In:  Journal of Applied Physics Vol. 106, No. 4 ( 2009-08-15)
    In: Journal of Applied Physics, AIP Publishing, Vol. 106, No. 4 ( 2009-08-15)
    Kurzfassung: The behavior of p-type conductivity in Mn-doped TiO2 films grown on LaAlO3 substrates by plasma-assisted molecular beam epitaxy has been investigated. Raman scattering, x-ray photoelectron spectroscopy, and x-ray diffraction studies indicate that the films are single phase, and Mn is successfully doped into the TiO2 matrix. Semiconducting behavior with p-type carriers was confirmed by Hall-effect measurements. The structural and electrical investigations demonstrate that the ferromagnetism observed at room temperature is an intrinsic property of the Mn:TiO2 films, and does not originate from any secondary phase. The magnetic properties of Ti1−xMnxO2 might be related to the formation of acceptor bound magnetic polarons, in which the spins of the holes and manganese are aligned via exchange interaction.
    Materialart: Online-Ressource
    ISSN: 0021-8979 , 1089-7550
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2009
    ZDB Id: 220641-9
    ZDB Id: 3112-4
    ZDB Id: 1476463-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2013
    In:  Journal of Applied Physics Vol. 113, No. 9 ( 2013-03-07)
    In: Journal of Applied Physics, AIP Publishing, Vol. 113, No. 9 ( 2013-03-07)
    Kurzfassung: Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.
    Materialart: Online-Ressource
    ISSN: 0021-8979 , 1089-7550
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2013
    ZDB Id: 220641-9
    ZDB Id: 3112-4
    ZDB Id: 1476463-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2023
    In:  Applied Physics Letters Vol. 123, No. 8 ( 2023-08-21)
    In: Applied Physics Letters, AIP Publishing, Vol. 123, No. 8 ( 2023-08-21)
    Kurzfassung: To enable organic light-emitting diodes (OLEDs) to be rolled and folded, we need a flexible encapsulation layer that can protect organic materials and metal electrodes that are susceptible to moisture and oxygen. Thin films that encapsulate organic electronic devices need to have excellent mechanical properties to prevent cracks during bending. Using plasma-enhanced chemical vapor deposition (PECVD) and other techniques, we fabricated high-density, stress gradient sandwich-structured films and studied the residual stress of deposited films on encapsulating films and their effect on delamination and cracking. We found that by adjusting the H2/N2 gas ratio and optimizing the Si:N:H ratio of PECVD SiNx:H films, denser, more etch-resistant, higher compressive stress and lower hydrogen content films can be deposited, thereby enable better flexible thin film encapsulation (TFE). We also deposited an inorganic/organic/inorganic sandwich structure film and utilized stress gradient changes to relieve the tensile stress on the outer film during bending. After standardized testing, the OLED with the stress gradient encapsulation structure has no dark spots after bending 10 000 times (bending radius 2 mm). This technique can be used in flexible TFE for various organic devices, showing promising applications in bendable and wearable products.
    Materialart: Online-Ressource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2023
    ZDB Id: 211245-0
    ZDB Id: 1469436-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...