GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AIP Publishing  (4)
Materialart
Verlag/Herausgeber
  • AIP Publishing  (4)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2018
    In:  Journal of Applied Physics Vol. 123, No. 9 ( 2018-03-07)
    In: Journal of Applied Physics, AIP Publishing, Vol. 123, No. 9 ( 2018-03-07)
    Kurzfassung: A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.
    Materialart: Online-Ressource
    ISSN: 0021-8979 , 1089-7550
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2018
    ZDB Id: 220641-9
    ZDB Id: 3112-4
    ZDB Id: 1476463-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2021
    In:  AIP Advances Vol. 11, No. 9 ( 2021-09-01)
    In: AIP Advances, AIP Publishing, Vol. 11, No. 9 ( 2021-09-01)
    Kurzfassung: A double E-shaped toroidal dipole metasurface is designed with the high Q-factor Fano and classical electromagnetically induced transparency (EIT) phenomena in the microwave frequency range. With the introduction of an asymmetric structure, the sharp Fano resonance can be excited and acquired a quite high Q-factor of 134 at a lower frequency of 4.58 GHz. It can be numerically and experimentally demonstrated that the singularity Fano response of designed construction is caused by the intensive toroidal dipole. In addition, due to destructive interference between the intensive toroidal dipole and electric dipole, the transmission peak of EIT can reach 0.95 with a Q-factor of 50 at 10.18 GHz. By calculating and comparing the radiated power of multipoles, the enhanced toroidal dipole response can be further verified. The designed planar toroidal dipole metamaterial with simple construction may have many possible applications in toroidal moment generators, sensing, and slow-light devices.
    Materialart: Online-Ressource
    ISSN: 2158-3226
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2021
    ZDB Id: 2583909-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  The Journal of Chemical Physics Vol. 157, No. 21 ( 2022-12-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 157, No. 21 ( 2022-12-07)
    Kurzfassung: We present a quasiparticle self-consistent GW (QSGW) implementation for periodic systems based on crystalline Gaussian basis sets. Our QSGW approach is based on a full-frequency analytic continuation GW scheme with Brillouin zone sampling and employs the Gaussian density fitting technique. We benchmark our QSGW implementation on a set of weakly correlated semiconductors and insulators as well as strongly correlated transition metal oxides, including MnO, FeO, CoO, and NiO. The band gap, band structure, and density of states are evaluated using finite size corrected QSGW. We find that although QSGW systematically overestimates the bandgaps of the tested semiconductors and transition metal oxides, it completely removes the dependence on the choice of density functionals and provides a more consistent prediction of spectral properties than G0W0 across a wide range of solids. This work paves the way for utilizing QSGW in ab initio quantum embedding for solids.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  Journal of Applied Physics Vol. 132, No. 16 ( 2022-10-28)
    In: Journal of Applied Physics, AIP Publishing, Vol. 132, No. 16 ( 2022-10-28)
    Kurzfassung: With the rise of artificial magnetism and metamaterials, toroidal resonance has gained much attention for its special properties. In this paper, we propose a novel hybrid graphene-metal metamolecule consisting of a square bracket-like resonator and two asymmetric U-shaped resonators. By applying various Fermi energies to graphene, the amplitude of electromagnetically induced transparency (EIT) can be efficiently manipulated, and the maximum amplitude modulation depth can attain 81% in the microwave region. Numerical simulations and theoretical analysis demonstrate that the dynamic manipulation is mainly induced by the active tuning toroidal resonance through the recombination effect of the conductive graphene. Also, the maximum group delay of 85 ps can be attained and controlled with the increasing Fermi energy. The proposed hybrid graphene-metal metamolecule and dynamically manipulating mode presents a novel modulating strategy of EIT-like analog based on the toroidal response, which has great application for the design of efficient tunable resonators, filters, and sensors.
    Materialart: Online-Ressource
    ISSN: 0021-8979 , 1089-7550
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 220641-9
    ZDB Id: 3112-4
    ZDB Id: 1476463-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...