GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (7). 5306-5324 .
    Publikationsdatum: 2020-02-06
    Beschreibung: Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behaviour is essential for reconstructing the internal structure of subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 (11). Q11016.
    Publikationsdatum: 2019-09-23
    Beschreibung: Low-angle normal faults play a prominent role in discussions about fault strength, as they require significant weakening to remain active at low angles. The submerged Moresby Seamount detachment (MSD) is arguably the best exposed active low-angle detachment worldwide. We analyzed dredged MSD protoliths, cataclasites and mylonites to investigate deformation mechanisms and fault-weakening processes. Deformation is accompanied by important syntectonic, fluid-induced mass transfer, controlling the rheological behavior of the MSD. While the mafic protolith behaves brittlely at the onset of deformation, the metasomatic mineralogical and chemical changes cause a transition to plastic flow as the rock is progressively exhumed. Immobile elements provide a reference frame for total material gains and losses. Si, Ca and K are syntectonically enriched, while Fe, Ti, Mg, and Al are depleted. Mass increase is about 10% in the cataclasites and about 48% in the mylonites. Main mechanism is syntectonic veining, causing enrichment in calcite and quartz, thus making the mylonites capable to flow plastically. Minimum time-integrated fluid flux is calculated as 3 × 105 m3 m−2, indicating that the MSD is an important fluid conduit. The fluids have a deep crustal source, a bottom water temperature and turbidity anomaly suggests that the hydrothermal system is still active. Syntectonic veining in fault rocks and recent seismic activity both suggest that the MSD is intermittently brittle, implying a brittle-plastic transition at unusually high temperature and low differential stress. We conclude that fault zone metasomatism is crucial in forming weak detachments at passive margins, and may be a prerequisite for successful crustal breakup.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-09-23
    Beschreibung: Nineteen whole-round core samples from the Nankai accretionary prism (IODP Expeditions 315, 316, and 333) from a depth range of 28–128 m below sea floor were experimentally deformed in a triaxial cell under consolidated and undrained conditions at confining pressures of 400–1000 kPa, room temperature, axial displacement rates of 0.01–9.0 mm/min, and up to axially compressive strains of ∼64%. Despite great similarities in composition and grain size distribution of the silty clay samples, two distinct “rheological groups” are distinguished: The first group shows deviatoric peak stress after only a few percent of compressional strain (〈10%) and a continuous stress decrease after peak conditions. Simultaneous to this decrease is a pore pressure increase indicating contractant behavior characteristic of structurally weak material. The second sample group weakens only moderately at a much higher strength level after significantly higher strain (〉10%), or does not weaken at all. This is characteristic of structurally strong material. The strong samples tend to be overconsolidated and are all from the drillsites at the accretionary prism toe, while the weak and normally consolidated samples come from the immediate hanging wall of a megasplay fault further upslope. Sediments from the incoming plate are also structurally weak. The observed differences in mechanical behavior may hold a key for understanding strain localization and brittle faulting within the uniform silty and clayey sedimentary sequence of the Nankai accretionary prism.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 116 (B10). B10305.
    Publikationsdatum: 2019-09-23
    Beschreibung: We developed thermal models for the Chile subduction zone along two profiles at 38.2°S and 42°S within the rupture area of the 1960 M = 9.5 Valdivia earthquake and south of the 2010 M = 8.8 Maule earthquake. The age difference of the subducting Nazca Plate has a major impact on the thermal regime, being much younger and hotter in the south. Seafloor heat flow observations confirm this difference but also indicate that in the southern area, heat advection at the outer rise cools the incoming plate. Heat flow values derived from the depth of gas hydrate bottom-simulating reflectors are in general agreement with probe and borehole measurements. The positions where the plate interface reaches temperatures of 100–150°C and 350–450°C differ between the two profiles. If these temperatures control the updip and downdip limits of the interplate seismogenic zone, the seismogenic zone widens and shifts landward to greater depths from south to north. Observed microseismicity, however, seems to fade at temperatures much lower than 350–450°C. This discrepancy can be explained in three alternative ways: (1) deformation in a thick subduction channel controls the seismic/aseismic transition; (2) microseismicity recorded over a limited time period does not represent the rupture depth of large interface earthquakes; or (3) the serpentinized mantle wedge controls the downdip limit.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 119 (2). pp. 787-805.
    Publikationsdatum: 2018-02-27
    Beschreibung: Acoustic velocities were measured during triaxial deformation tests of silty clay and clayey silt core samples from the Nankai subduction zone (Integrated Ocean Drilling Program Expeditions 315, 316, and 333). We provide a new data set, continuously measured during pressure increase and subsequent axial deformation. A new data processing method was developed using seismic time series analysis. Compressional wave velocities (V-p) range between about 1450 and 2200 m/s, and shear wave velocities (V-s) range between about 150 and 800 m/s. V-p slightly increases with rising effective confining pressure and effective axial stress. Samples from the accretionary prism toe show the highest Vp, while fore-arc slope sediments show lower Vp. Samples from the incoming plate, slightly richer in clay minerals, have the lowest values for V-p. V-s increases with higher effective confining pressures and effective axial stress, irrespective of composition and tectonic setting. Shear and bulk moduli are between 0.2 and 1.3 GPa, and 3.85 and 8.41 GPa, respectively. Elastic moduli of samples from the accretionary prism toe and the footwall of the megasplay fault (1.50 and 3.98 GPa) are higher than those from the hanging wall and incoming plate (0.59 and 0.88 GPa). This allows differentiation between normal and overconsolidated sediments. The data show that in a tectonosedimentary environment of only subtle compositional differences, acoustic properties can be used to differentiate between stronger (accretionary prism toe) and weaker (fore-arc slope, incoming plate) sediments. Especially V-p/V-s ratios may be instrumental in detecting zones of low effective stress and thus high pore fluid pressure
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 111 . B04201.
    Publikationsdatum: 2018-04-25
    Beschreibung: Deformation experiments on Black Hills quartzite with three different initial water contents (as-is, water-added, and vacuum-dried) were carried out in the dislocation creep regime in order to evaluate the effect of water on the recrystallized grain size/flow stress piezometer. Samples were deformed in axial compression at temperatures of 750°–1100°C, strain rates between 2 × 10−7 s−1 and 2 × 10−4 s−1 and strains up to 46% using a molten salt assembly in a Griggs apparatus. An increase of the initial water content at otherwise constant deformation conditions caused a decrease in flow stress, an effect known as hydrolytic weakening. The total water content of the starting material was analyzed by Karl Fischer titration (KFT) and Fourier transform infrared (IR) spectroscopy, and quenched samples were analyzed microstructurally and by IR. Changes in the dynamic recrystallization microstructure correlate with changes in flow stress, but there is no independent effect of temperature, strain rate or water content. IR absorption spectra of the deformed spectra indicate that different water contents were maintained in the three sample sets throughout the experiments. However, the amounts of water measured within the vacuum-dried (∼260 ± 40 ppm H2O), the as-is (∼340 ± 50 ppm H2O), and the water-added (∼430 ± 110 ppm H2O) samples are significantly smaller than the initial content of the quartzite (∼640 ± 50 ppm H2O). Water from the inclusions in the starting material adds to the free fluid phase along the grain boundaries, which probably controls the water fugacity and the flow strength, but this water is largely lost during IR sample preparation. Vacuum-dried as well as water-added samples have the same recrystallized grain size/flow stress relationship as the piezometer determined for as-is samples. No independent effect of water on the piezometric relationship has been detected.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 12 (6). Q06012.
    Publikationsdatum: 2018-03-13
    Beschreibung: Quartz mylonites from the Tonale Fault Zone in the Alps (northern Italy) have been investigated by the Ti-in-quartz geothermometer (TitaniQ) in order to test its applicability to measure deformation temperatures. The eastern part of the Tonale Fault Zone was contact metamorphosed by the synkinematic intrusion of the Adamello pluton, forming an ∼800 m wide mylonitic shear zone, with a synkinematic temperature gradient from ∼280°C at the frictional-viscous transition to ∼700°C at the pluton contact as derived from metamorphic mineral assemblages. Deformation microstructures from quartz mylonite samples, systematically collected across the mylonitic shear zone, display the entire range of dynamic recrystallization in quartz, which comprise bulging recrystallization (BLG), subgrain rotation recrystallization (SGR), and grain boundary migration recrystallization (GBM). TitaniQ geothermometry yields the near-peak deformation temperature for quartz mylonites deformed at metamorphic temperatures above ∼540°C in the zone of GBM. However, for mylonites formed under lower temperatures in the zones of SGR and BLG, the preexisting Ti concentrations were not reset. It is suggested that this is due to the sluggish Ti volume diffusion rates below 500°C and the short duration of contact metamorphism and deformation. Even in the higher temperature samples the reequilibration of Ti-in-quartz content was achieved by grain boundary migration rather than by volume diffusion. Hence, our results show that GBM is crucial for the reequilibration of Ti-in-quartz, while quartz mylonites deformed by either BLG or SGR, which predominate in natural shear zones at greenschist facies metamorphic conditions, most likely yield inherited temperatures.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 16 (6). pp. 1825-1847.
    Publikationsdatum: 2017-04-12
    Beschreibung: The age of the subducting Nazca Plate off Chile increases northward from 0 Ma at the Chile Triple Junction (46°S) to 37 Ma at the latitude of Valparaíso (32°S). Age-related variations in the thermal state of the subducting plate impact on (a) the water influx to the subduction zone, as well as on (b) the volumes of water that are released under the continental fore arc or, alternatively, carried beyond the arc. Southern Central Chile is an ideal setting to study this effect, because other factors for the subduction zone water budget appear constant. We determine the water influx by calculating the crustal water uptake and by modeling the upper mantle serpentinization at the outer rise of the Chile Trench. The water release under fore arc and arc is determined by coupling FEM thermal models of the subducting plate with stability fields of water-releasing mineral reactions for upper and lower crust and hydrated mantle. Results show that both the influx of water stored in, and the outflux of water released from upper crust, lower crust, and mantle vary drastically over segment boundaries. In particular, the oldest and coldest segments carry roughly twice as much water into the subduction zone as the youngest and hottest segments, but their release flux to the fore arc is only about one fourth of the latter. This high variability over a subduction zone of 〈1500 km length shows that it is insufficient to consider subduction zones as uniform entities in global estimates of subduction zone fluxes.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-03-09
    Beschreibung: The spectrum of slip modes occurring along shallow portions of the plate boundary décollement in subduction zones includes aseismic slip, slow slip, and seismogenic slip. The factors that control slip modes directly influence the hazard potential of subduction zones for generating large magnitude earthquakes and tsunamis. We conducted an experimental study of the frictional behaviour of subduction input sediments, recovered from two IODP expeditions to the erosive subduction margin offshore Costa Rica (Exp. 334, 344),employing rotary shear under hydrothermal conditions. The velocity dependence of friction was explored, using simulated gouges prepared from all major lithologies, covering a wide range of conditions representative for the initial stages of subduction. Temperature, effective normal stress, and pore fluid pressure were varied systematically up to 140 °C, 110 MPa and 120 MPa respectively. Sliding velocities up to 100 μm/s, relevant for earthquake rupture nucleation and slow slip, were investigated. The only sediment type that produced frictional instabilities (i.e. laboratory earthquakes) was the calcareous ooze carried by the incoming Cocos Plate, which by virtue of its slip weakening behaviour is also a likely candidate for triggering slow slip events. We evaluate this mechanism of producing unstable slip and consider alternatives. Therefore, locking and unlocking of plate boundary megathrusts are not only related to variations in pore fluid pressure, but may also depend on the presence of pelagic carbonate‐rich lithologies. Subduction systems containing such input are likely low‐latitude, where extensive deposition of carbonates takes place above the CCD.
    Materialart: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-02-07
    Beschreibung: Crystallographic preferred orientation (CPO) and the associated seismic anisotropy of serpentinites are important factors for the understanding of tectonic settings involving hydrated Earth´s mantle, for example, at slow-spreading mid-ocean ridges. CPO of lizardite and magnetite in low-grade metamorphic serpentinites from the Atlantis Massif oceanic core complex (Mid-Atlantic Ridge, 30°N) were determined using synchrotron high energy X-ray diffraction in combination with Rietveld texture analysis. Serpentinite mesh structures show weak CPO while deformed samples show a single (0001) maximum perpendicular to the foliation. Seismic anisotropies calculated from CPO show up to 〉11% anisotropy for compressional waves (Vp) and shear wave splitting up to 0.38 km/s in the deformed samples. This indicates that deformation in shear zones controls elastic anisotropy and highlights its importance in defining the seismic signature of hydrated upper mantle.
    Materialart: Article , PeerReviewed
    Format: text
    Format: other
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...