GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (3)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 102 (C8) . pp. 18529-18552.
    Publication Date: 2019-09-23
    Description: An ocean circulation model for process studies of the Subpolar North Atlantic is developed based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM) code. The basic model configuration is identical with that of the high-resolution model (with a grid size of 1/3° × 2/5°) of the World Ocean Circulation Experiment (WOCE) Community Modeling Effort (CME), except that the domain of integration is confined to the area from 43° to 65°N. Open boundary conditions are used for the inflows and outflows across the northern and southern boundaries. A comparison with the CME model covering the whole North Atlantic (from 15°S to 65°N) shows that the regional model, with inflow conditions at 43°N from a CME solution, is able to reproduce the CME results for the subpolar area. Thus the potential of a regional model lies in its use as an efficient tool for numerical experiments aiming at an identification of the key physical processes that determine the circulation and water mass transformations in the subpolar gyre. This study deals primarily with the representation and role of the overflow waters that enter the domain at the northern boundary. Sensitivity experiments show the effect of closed versus open boundaries, of different hydrographic conditions at inflow points, and of the representation of the narrow Faeroe Bank Channel. The representation of overflow processes in the Denmark Strait is the main controlling mechanism for the net transport of the deep boundary current along the Greenland continental slope and further downstream. Changes in the Faeroe Bank Channel throughflow conditions have a comparatively smaller effect on the deep transport in the western basin but strongly affect the water mass characteristics in the eastern North Atlantic. The deep water transport at Cape Farewell and further downstream is enhanced compared to the combined Denmark Strait and Iceland-Scotland overflows. This enhancement can be attributed to a barotropic recirculation in the Irminger Basin which is very sensitive to the outflow conditions in the Denmark Strait. The representation of both overflow regions determine the upper layer circulation in the Irminger and Iceland Basins, in particular the path of the North Atlantic Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 108 (C5). p. 3159.
    Publication Date: 2018-04-18
    Description: A series of numerical experiments with models of the Atlantic Ocean is analyzed with respect to the uptake of CFC‐11 and its export from the subpolar gyre with the North Atlantic Deep Water. We discuss the influence of parameterizations for air‐sea gas exchange and subgrid‐scale processes on the rate of CFC‐11 that enters the North Atlantic Ocean and its dependence on horizontal grid spacing in models from medium (4/3°) to eddy‐permitting (1/3°) horizontal resolution. Model results are compared with observational estimates of tracer inventories in order to evaluate to what degree the simulations capture realistic CFC distributions. While higher resolution is needed to model details of the CFC distribution, for example, in the Deep Western Boundary Current, the medium resolution models are able to simulate quantitatively satisfying CFC inventories in different water masses. Nevertheless, the inventories derived from the medium‐resolution experiments show a critical dependence on details of the parameterization of the mixing effect of mesoscale eddies and on the representation of bottom boundary layer processes. The numerical representation of eddy activity turns out to be of crucial importance in order to obtain modeled CFC inventories in agreement with observed values, which can be achieved either by carefully choosing the mixing parameterization or by applying higher horizontal resolution. The ratio of CFC‐11 being exported southward from the subpolar North Atlantic to the total CFC‐11 inventory in NADW does not vary significantly over the suite of model experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...