GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Submarine groundwater discharge (SGD) into coastal areas is a common global phenomenon and is rapidly gaining scientific interest due to its influence on marine ecology, the coastal sedimentary environment and its potential as a future freshwater resource. We conducted an integrated study of hydroacoustic surveys combined with geochemical porewater and water column investigations at a well‐known groundwater seep site in Eckernförde Bay (Germany). We aim to better constrain the effects of shallow gas and SGD on high frequency multibeam backscatter data and to present acoustic indications for submarine groundwater discharge. Our high‐quality hydroacoustic data reveal hitherto unknown internal structures within the pockmarks in Eckernförde Bay. Using precisely positioned sediment core samples, our hydroacoustic‐geochemical approach can differentiate intra‐pockmark regimes that were formerly assigned to pockmarks of a different nature. We demonstrate that high‐frequency multibeam data, in particular the backscatter signals, can be used to detect shallow free gas in areas of enhanced groundwater advection in muddy sediments. Intriguingly, our data reveal relatively small (typically 〈15 m across) pockmarks within the much larger, previously mapped, pockmarks. The small pockmarks, which we refer to as “intra‐pockmarks”, have formed due to the localized ascent of gas and groundwater; they manifest themselves as a new type of ‘eyed’ pockmarks, revealed by their acoustic backscatter pattern. Our data suggest that, in organic‐rich muddy sediments, morphological lows combined with a strong multibeam backscatter signal can be indicative of free shallow gas and subsequent advective groundwater flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography and Paleoclimatology, 34 (5). pp. 866-885.
    Publication Date: 2022-01-31
    Description: Key Points: - Rapid subsurface oceanographic change in the tropical W Atlantic reflect shifting Subtropical Gyre - Subsurface warming responds to deglacial AMOC perturbations (Heinrich Stadials 2, 1, and the Younger Dryas) - Southward propagation of Salinity Maximum Water during Northern Hemisphere cold spells shift the mixing zone of tropical and subtropical waters During times of deglacial Atlantic Meridional Overturning Circulation (AMOC) perturbations, the tropical Atlantic experienced considerable warming at subsurface levels. Coupled ocean‐atmosphere simulations corroborate the tight teleconnection between the tropical Atlantic and climate change at high northern latitudes, but still underestimate the relevance of the subsurface N Atlantic Subtropical Gyre (STG) for heat and salt storage and its sensitivity to rapid climatic change. We here reconstruct vertical and lateral temperature and salinity gradients in the tropical W Atlantic and the Caribbean over the last 30 kyrs, based on planktic deep and shallow dwelling foraminiferal Mg/Ca and δ18O‐records. The rapid and large amplitude subsurface changes illustrate a dynamic STG associated with abrupt shifts of North Atlantic hydrographic and atmospheric regimes. During full glacial conditions, the STG has been shifted southward while intensified Ekman‐downwelling associated to strengthened trade winds fostered the formation of warm and saline Salinity Maximum Water (SMW). The southward propagation of SMW was facilitated by the glacially eastward deflected North Brazil Current. During periods of significant AMOC perturbations (Heinrich Stadials 1, and the Younger Dryas), extreme subsurface warming by ~6°C led to diminished lateral subsurface temperature gradients. Coevally, a deep thermocline suggests that SMW fully occupied the subsurface tropical W Atlantic and that the STG reached its southernmost position. During the Holocene, modern‐like conditions gradually developed with the northward retreat of SMW and the development of a strong thermocline ridge between the Subtropical Gyre and the tropical W Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...