GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • AAAS (American Association for the Advancement of Science)  (1)
  • Inter Research  (1)
  • 1
    Publikationsdatum: 2021-03-30
    Beschreibung: Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Inter Research
    In:  Marine Ecology Progress Series, 486 . pp. 37-46.
    Publikationsdatum: 2018-06-25
    Beschreibung: Changing seawater chemistry towards reduced pH as a result of increasing atmospheric carbon dioxide (CO2) is affecting oceanic organisms, particularly calcifying species. Responses of non-calcifying consumers are highly variable and mainly mediated through indirect ocean acidification effects induced by changing the biochemical content of their prey, as shown within single species and simple 2-trophic level systems. However, it can be expected that indirect CO2 impacts observed at the single species level are compensated at the ecosystem level by species richness and complex trophic interactions. A dampening of CO2-effects can be further expected for coastal communities adapted to strong natural fluctuations in pCO2, typical for productive coastal habitats. Here we show that a plankton community of the Kiel Fjord was tolerant to CO2 partial pressure (pCO2) levels projected for the end of this century (〈1400 µatm), and only subtle differences were observed at the extremely high value of 4000 µatm. We found similar phyto- and microzooplankton biomass and copepod abundance and egg production across all CO2 treatment levels. Stoichiometric phytoplankton food quality was minimally different at the highest pCO2 treatment, but was far from being potentially limiting for copepods. These results are in contrast to studies that include only a single species, which observe strong indirect CO2 effects for herbivores and suggest limitations of biological responses at the level of organism to community. Although this coastal plankton community was highly tolerant to high fluctuations in pCO2, increase in hypoxia and CO2 uptake by the ocean can aggravate acidification and may lead to pH changes outside the range presently experienced by coastal organisms.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...