GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1970-1974  (24)
Schlagwörter
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Buch
    Buch
    Berlin [u.a.] : Springer
    Schlagwort(e): Submarine geology ; Fachkunde ; submarine geology ; Meeresboden ; Meeresboden ; Geomorphologie ; Meeresgeologie ; Meeresboden ; Meeresboden ; Geomorphologie ; Meeresgeologie
    Beschreibung / Inhaltsverzeichnis: Das Buch führt in die Formen des Meeresbodens, seine Bedeckung mit Sedimenten, deren Bestandteile und Herkunft und deren Wechselwirkung mit dem Wasser und den Organismen und die verschiedenen Hypothesen zur Entstehung der Ozeanbecken ein. (MOD)
    Materialart: Buch
    Seiten: XII, 183 S. , Ill., graph. Darst., Kt. , zahlr. Tab. , zahlr. Ill.
    ISBN: 3540068686 , 0387068686
    Serie: Hochschultext
    DDC: 551.4/608
    RVK:
    RVK:
    RVK:
    Sprache: Deutsch
    Anmerkung: Fotodr , Literaturverz.S. 171 - 173
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Wiesbaden : Verl. der Akad. der Wiss. und der Literatur | Wiesbaden : Steiner [in Komm.]
    Schlagwort(e): Plate tectonics ; Continental margins ; Plattentektonik
    Materialart: Buch
    Seiten: 23 S. , Ill.
    Serie: Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse / Akademie der Wissenschaften und der Literatur in Mainz 1973,2
    DDC: 500.1/08s
    Sprache: Deutsch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Schlagwort(e): Hochschulschrift
    Materialart: Buch
    Seiten: 86, XVII S., [76] Bl. , graph. Darst., Kt.
    Sprache: Französisch
    Anmerkung: Rennes, Univ., Diss., 1971
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    International journal of earth sciences 60 (1970), S. 73-105 
    ISSN: 1437-3262
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Beschreibung / Inhaltsverzeichnis: Abstract Adjacent seas in humid and arid climates differ in their water circulation patterns. This difference effects both the organisms and the sediment. The following table compares the two ideal models: Even recent examples do, however, show divergences from the ideal model. These discrepancies can develop through severe cooling during winter, anomalous weather condition in the straits leading to the open oceans or through differences in climate between the surrounding land area and the adjacent sea or the lagoons of the same basin. Therefore, one should not attempt to apply this model scheme as a whole to fossil conditions. The analysis of the individual factors, and the attempt to reconstruct a complete picture from them is more important than the model itself.
    Kurzfassung: Résumé Les mers intérieurs situées sous climat humide se différencient de celles soumises au climat aride par le mode de circulation de leurs eaux. De cette différence découle le parallélisme entre les deux modèles suivants. Des circonstances récentes ont cependant déjà apporté des modifications à cette généralisation schématique: modifications dues, soit à un refroidissement hivernal intensif, soit aux conditions météorologiques des détroits déterminant la communication avec l'océan, soit encore aux différences climatiques existant entre le continent et la mer interieure, ou entre cette dernière et ses lagunes. On ne doit donc pas transposer hâtivement le schéma de ces modèles à celui des paléobassins du même type. L'analyse des différents facteurs, l'essai de déduction d'un schéma d'ensemble sont en fait plus importants que le modèle lui-même.
    Notizen: Zusammenfassung Nebenmeere im humiden und ariden Klimabereich unterscheiden sich in ihrer Wasserzirkulation. Sie wirkt sich auch auf Organismen und Sedimente aus. Dabei ergeben sich die folgenden beiden Modelle: Schon bei rezenten Fällen kommen Abweichungen vor, etwa durch intensive winterliche Abkühlung, durch die Witterungsverhältnisse an den entscheidenden Verbindungsstraßen zum offenen Ozean, durch klimatische Unterschiede zwischen Einzugsgebiet und Nebenmeer oder in den Lagunen desselben Beckens. Deshalb dürfen diese Modelle nicht schematisch auf fossile Verhältnisse übertragen werden. Die Analyse der einzelnen Faktoren und der Versuch, daraus ein Gesamtbild zu gewinnen, sind wichtiger als das Modell selbst.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    International journal of earth sciences 62 (1973), S. 641-684 
    ISSN: 1437-3262
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Beschreibung / Inhaltsverzeichnis: Abstract Metal compounds are essentially supplied to the sea bottom from above by terrigenous, volcanogenic or biogenic particles, by colloids or by adsorptive processes. From below they are supplied by hydrothermal solutions or diagenetic processes. To date, these compounds are known to be concentrated especially in areas of reduced sedimentation: On marine beaches placer deposits are found formed by sorting effects due to wave action. On the deep sea bottom metal-bearing muds and manganese nodules occur in areas with limited terrigenous or biogenic supply or in areas of strong carbonate dissolution. Mechanical and/or chemical processes are involved. Many of these processes in recent seas are not understood in principal nor are they well-known regionally or even locally. Up to now many intensively investigated fossil examples have not been detected on the present sea floor. Therefore only very few predictions about occurrences of concentrations of specific metals are possible.
    Kurzfassung: Résumé Des composés métalliques sont amenés au fond de la mer d'en haut par des grains terrigènes, vulcanogènes et biogènes, comme flocules colloïdales ou par des processus d'adsorption, et par en bas par des solutions hydrothermales ou des phénomènes de diagenèse. D'après les exemples connus jusqu'ici, ces composés métalliques peuvent être enrichis dans des régions à faible vitesse de sédimentation: Près de la plage des concentrations de minéraux lourds se forment par classement mécanique. Dans la mer profonde des nodules de manganèse ou des boues métallifères se forment par des procédés mécaniques ou/et chimiques, dans des régions où la sédimentation terrigène et biogène est très réduite ou dans des régions à forte dissolution de calcaire. Beaucoup de ces phénomènes ne sont bien connus dans les mers actuelles, ni en principe ni dans leur importance régionale ou même locale. Beaucoup de cas fossiles bien étudiés n'ont pas encore été retrouvés sur le fond des mers actuelles. C'est pourquoi, des prédictions sur la présence de métaux spécifiques ne sont presque pas possibles actuellement.
    Notizen: Zusammenfassung Metallverbindungen werden dem Meeresboden im wesentlichen von oben in terrigenen, vulkanogenen oder biogenen Körnern, als kolloidale Flocken oder über adsorptive Vorgänge, von unten durch hydrothermale Lösungen oder diagenetische Prozesse zugeführt. Sie können sich nach den bisher bekannten Beispielen vor allem in Gebieten mit geringem Sedimentzuwachs anreichern, im Strandbereich durch mechanische Sortierung als Seifen, in der Tiefsee bei zurücktretender terrigener und biogener Zufuhr oder zusätzlicher starker Kalklösung durch mechanische oder/und chemische Vorgänge als Manganknollen oder Erzschlämme. Viele dieser Vorgänge sind im heutigen Meer weder im Prinzip noch in deren regionaler oder gar lokaler Bedeutung hinlänglich bekannt. Viele gut untersuchte fossile Fälle sind zudem rezent noch nicht entdeckt worden. Deshalb können Voraussagen für das Vorkommen spezifischer Metalle noch kaum gewagt werden.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Contributions to mineralogy and petrology 31 (1971), S. 159-163 
    ISSN: 1432-0967
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Akademie der Wissenschaften und der Literatur
    In:  EPIC3Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur, (2), pp. 3-23
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , notRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hartmann, Martin; Lange, Heinz; Seibold, Eugen; Walger, Eckart (1971): Oberflächensedimente im Persischen Golf und Golf von Oman. I. Geologisch-hydrologischer Rahmen und erste sedimentologische Ergebnisse. Meteor Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe C Geologie und Geophysik, Gebrüder Bornträger, Berlin, Stuttgart, C4, 1-76
    Publikationsdatum: 2024-02-03
    Beschreibung: 1. Morphology and sedimentation The deepest parts of the Persian Gulf lie off the Iranian coast. Several swells separate the Persian Gulf into the Western Basin, the Central Basin and the Strait of Hormuz, which leads without noticeable morphological interruption onto the Biaban Shelf; the latter gradually drops off towards the continental slope, which itself has a strongly subdivided morphology. The sediment distribution in the Western Basin runs parallel to the basin's axis to a depth of 50 -60 m. This is caused by the shallow and uniform slope of the Iranian coast into the Western Basin, by clear exposure of the area to the Shamal-Winds and by tidal currents parallel to the basin's axis. Most other parameters also show isolines parallel to the coast line. Data from the sediment analyses show a net transport which extends out along the Central Swell: coarse fraction 〉 63 µ, total carbonate content, carbonate in fine fractions 〈 2 µ, 2-6 µ and 20-63 µ, calcite-aragonite ratios in the fine fractions 2-6 µ and 20-63 µ and quartz-dolomite ratios in fine fraction 2-6 µ. At least the uppermost 10-40 m of this sediment is late Holocene. This implies sedimentation rates of several meters per 1000 years. The slope from the Iranian coast into the Central Basin (max. depth 100 m) is generally steeper, with interspersed islands and flats. Both facts tend to disturb a sediment dustribition parallel to the basin's axis over extensive areas and may preclude any such trend from being detected by the methods and sample net used. The spatial distribution of the coarse fraction, however, seems to indicate sediment transport at greater water depths perpendicular to the basin's long axis and along the steepest gradients well into the Central Basin. The flats of the Central Basin have a sediment cover distinctly different from those of the deeper basin areas. Characteristic parameters are the extremely high percentages of coarse grained sediments, total content of carbonate CO2 over 40, low total organic carbon content, (however values are high if calculated on the basis of the 〈 63 µ fraction), low total N-content, and low C/N ratios. These characteristics probably result from the absence of any terrigenous material being brought in as well as from exposure to wave action. Finest terrigenous material is deposited in the innermost protected part of the Hormuz Bay. In the deep channel cut into the Biaban Shelf which carries the Persian Gulf out-flow water to the Indian Ocean, no fine grained sediment is deposited as shown by grain size data. 2. Geographic settings and sedimentation Flat lands border the Arabian coast of the Persian Gulf except for the Oman region. The high and steep Zagros Mountains form the Iranian coastline. Flat topography in combination with generally low precipitation precludes fluviatile sediment being added from the South. Inorganic and biogenic carbonates accumulating under low sedimentation rates are dominant on the shallow Arabic Shelf and the slopes into the Western and Central Basins. The fluviatile sediment brought in from the Iranian side, however decisively determine the composition of the Holocene sediment cover in the Persian Gulf and on the Biaban Shelf. Holocene sediments extend 20-30 km seaward into the Western Basin and about 25 km on to the Biaban Shelf. As mentioned before, sedimentation rates are of several meters/1000 years. The rocks exposed in the hinterland influence the sediments. According to our data the Redbeds of the Zagros Mountains determine the colour of the very fine grained sediments near the Iranian Coast of the Persian Gulf. To the West of Hormuz, addition of carbonate minerals is particularly high. Dolomite and protodolomite, deposited only in this area, as well as palygorskite, have proven to be excellent trace minerals. To the East of Hormuz, the supply of terrigenous carbonates is considerably lower. Clay minerals appear to bring in inorganically bound nitrogen thus lowering the C/N ratio in these sediments especially off river mouths. 3. Climate and sedimentation The Persian Gulf is located in a climatically arid region. This directly affects sedimentation through increased wind action and the infrequent but heavy rainfalls which cause flash floods. Such flash floods could be responsible for transporting sedheats into the Central Basin in a direction perpendicular to the Gulf's axis. Eolian influx is difficult to asses from our data; however, it probably is of minor importance from the Iranian side and may add, at the most, a few centimeters of fine sediment per 1000 years. 4. Hydrology and sedimentation High water temperatures favor inorganic carbonate precipitation in southern margin of the Gulf, and probably on the flats, as well as biogenic carbonate production in general. High evaporation plus low water inflow through rivers and precipitation cause a circulation pattern that is typical for epicontinental seas within the arid climate region. Surface water flows in from the adjoining ocean, in this case the Indian Ocean and sinks to the bottom of the Persian Gulf mainly in the northern part of the Western Basin, on the "Mesopotamischer Flachschelf" ard probably in the area of the "Arabischer Flachschelf". This sinking water continually rejuvenates the bottom out-flow water. The inflowing surface water from the Indian Ocean brings organic matter into the Persian Gulf, additional nutrients are added by the "fresh" upwelling waters of the Gulf of Oman. Both nutrients and organic matter diminish very rapidly as the water moves into the Persian Gulf. This depletion of nutrients and organic matter is the reasonfor generally low organic carbon contents of the Persian Gulf sediments. The Central Swell represents a distinct boundary, to the west of which the organic carbon content are lower than to the east when sediment samples of similar grain size distribution are compared. The outflow carries well oxygenated water over the bottom of the Persian Gulf and the resulting oxidation further decreases the content of organic matter. In the Masandam-Channel and in the Biaban-Shelf channel, the outflowing water prevents deposition of fine material and transports sediment particles well beyond the shelf margin. The outflowing water remains at a depth of 200-300 m depending on its density and releases ist suspending sediment load to the ocean floor, irrespectative of the bottom morphology. This is reflected in several parameters in which the sediments from beneath the outflow differ from nearby sediments not affected by the outflowing water. High carbonate content of total samples and of the individual size fraction as well as high aragonite and dolomite contents of individual size fractions characterize the sediment beneath the outflowing water. The tidal currents, which avt more or less parallel to the Gulf's axis, favor mixing of the water masses, they rework sediments at velocities reported here. This fact enlarges to a certain degree the extent of our interfaces which are based on only a few sample points (Persian Gulf and Biaban Shelf one sample per 620 km**2, continental slope one sample per 1000 km**2). The water on the continental slope shows and oxygen minimum at 200-1200 m which favors preservation of organically-bound carbon in the sediment. The low pH-values may even permit dissolution of carbonate minerals.
    Schlagwort(e): BC; Box corer; CTD/Rosette; CTD-RO; GIK/IfG; GIK01049; GIK01051; GIK01052; GIK01054; GIK01055; GIK01056; GIK01057; GIK01058; GIK01059; GIK01060; GIK01061; GIK01062; GIK01063; GIK01064; GIK01065; GIK01066; GIK01067; GIK01068; GIK01069; GIK01070; GIK01071; GIK01072; GIK01073; GIK01074; GIK01075; GIK01076; GIK01077; GIK01078; GIK01079; GIK01080; GIK01081; GIK01082; GIK01083; GIK01084; GIK01085; GIK01086; GIK01087; GIK01088; GIK01089; GIK01090; GIK01091; GIK01092; GIK01093; GIK01094; GIK01095; GIK01096; GIK01097; GIK01098; GIK01099; GIK01100; GIK01101; GIK01102; GIK01103; GIK01104; GIK01105; GIK01106; GIK01107; GIK01108; GIK01109; GIK01110; GIK01111; GIK01112; GIK01113; GIK01114; GIK01115; GIK01116; GIK01117-2; GIK01118; GIK01119; GIK01120; GIK01121; GIK01122; GIK01123; GIK01124; GIK01125; GIK01126; GIK01127; GIK01128; GIK01129; GIK01130; GIK01131; GIK01132; GIK01133; GIK01134; GIK01135; GIK01136; GIK01137; GIK01138; GIK01139; GIK01140; GIK01141; GIK01142; GIK01143; GIK01144; GIK01145; GIK01146; GIK01147; GIK01148; GIK01149; GIK01150; GIK01151; GIK01152; GIK01153; GIK01154; GIK01155; GIK01156; GIK01157; GIK01158; GIK01159; GIK01160; GIK01161; GIK01162; GIK01163; GIK01164; GIK01165; GIK01166; GIK01167; GIK01168; GIK01169; GIK01170; GIK01171; GIK01172; GIK01173; GIK01174; GIK01175; GIK01176; GIK01177; GIK01178; GIK01179; GIK01180; GIK01181; GIK01182; GIK01183; GIK01184; GIK01185; GIK01186; GIK01187; GIK01188; GIK01189; GIK01190; GIK01191; GIK01192; GIK01193; GIK01194; GIK01195; GIK01196; GIK01197; GIK01198; GIK01199; GIK01200; GIK01201; GIK01202; GIK01203; GIK01204; Gravity corer (Kiel type); IIOE - International Indian Ocean Expedition; Institute for Geosciences, Christian Albrechts University, Kiel; KAL; Kasten corer; M1; M1_243; M1_245 01051-B; M1_246; M1_249; M1_250; M1_251; M1_252 01057-C; M1_253; M1_254 01059-B; M1_255; M1_256; M1_257; M1_258; M1_259; M1_260; M1_261; M1_262; M1_263; M1_264; M1_265; M1_266; M1_267; M1_268; M1_269; M1_270; M1_271; M1_272; M1_273 01078-A; M1_274; M1_275; M1_276; M1_277; M1_278 01083-B; M1_279 01084-B; M1_280A; M1_280B; M1_280C 01087-B; M1_281 01088-C; M1_282; M1_283; M1_284; M1_285; M1_286 01093-B; M1_287; M1_288; M1_289 01096-B; M1_290; M1_290B; M1_290C; M1_291; M1_292 11101-2; M1_293 11102-3; M1_294; M1_295 11104-2; M1_296 11105-3; M1_297 11106-2; M1_298; M1_299; M1_300; M1_301 11110-2; M1_302 11111-2; M1_303 11112-1; M1_304 11113-2; M1_305 11114-2; M1_306; M1_307; M1_308 11117-2; M1_309; M1_310 11119-2; M1_311 11120-2; M1_312 11121-2; M1_313 11122-2; M1_314; M1_315; M1_316; M1_317; M1_318 01127-B; M1_319 01128-B; M1_320 01129-B; M1_321 01130-B; M1_322; M1_323 11132-1; M1_324; M1_324 11134-1; M1_326 01135-B; M1_327 01136-B; M1_328A 01137-B; M1_328B 01138-B; M1_329; M1_329C 01141-B; M1_330A 01142-B; M1_330B 01143-B; M1_330C 01144-B; M1_331 01145-C; M1_332 01146-B; M1_333; M1_334 01148-B; M1_335 01149-B; M1_336 01150-B; M1_337 01151-B; M1_338 01152-B; M1_339 11053-1; M1_340 01154-B; M1_341 01155-B; M1_342; M1_342A 01156-B; M1_343; M1_344; M1_345; M1_346 01161-B; M1_347A 01162-B; M1_347B 01163-B; M1_347C; M1_348 01165-A; M1_349 01166-B; M1_350; M1_351; M1_352 01173-C; M1_353 01174-B; M1_354 01175-B; M1_355A 01176-B; M1_355B 01177-C; M1_356 01178-C; M1_357 11079-2; M1_358 01180-C; M1_359 11081-2; M1_360 01182-B; M1_361 01183-B; M1_362; M1_363 11085-2; M1_364; M1_365 01187-C; M1_366 11088-1; M1_367; M1_368 01190-C; M1_369; M1_370 11092-2; M1_371; M1_372; M1_373; M1_374 01196-C; M1_375; M1_376 01198-B; M1_377 01199-G; M1_378 01200-B; M1_379; M1_380; M1_381; M1_382; M1_CTD372; M1_CTD373; M1_CTD380; M1_CTD381; Meteor (1964); Northern Arabian Sea; Persian Gulf; Req_1; Req_12; Req_13; Req_14; Req_17; Req_18; Req_2; Req_20; Req_22; Req_23; Req_25; Req_29; Req_30; Req_31; Req_33; Req_34; Req_35; Req_36; Req_40; Req_5; Req_7; Req_9; SL
    Materialart: Dataset
    Format: application/zip, 6 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2024-02-03
    Schlagwort(e): BC; Box corer; Comment; Comment 2 (continued); Comment 3 (continued); Current direction description; DEPTH, water; Elevation of event; Event label; GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel; Latitude of event; Longitude of event; Persian Gulf; Req_1; Req_12; Req_13; Req_14; Req_17; Req_18; Req_2; Req_20; Req_22; Req_23; Req_25; Req_29; Req_30; Req_31; Req_33; Req_34; Req_35; Req_36; Req_40; Req_5; Req_7; Req_9; Time in hours
    Materialart: Dataset
    Format: text/tab-separated-values, 120 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-02-03
    Schlagwort(e): BC; Box corer; Calcium carbonate; Carbon, organic, fraction; Carbon, organic, total; Carbon/Nitrogen ratio; Color code HLS-system; DEPTH, sediment/rock; Dissolvable fraction; Elevation of event; Event label; GIK/IfG; GIK01049; GIK01051; GIK01052; GIK01054; GIK01055; GIK01056; GIK01057; GIK01058; GIK01059; GIK01060; GIK01061; GIK01062; GIK01063; GIK01064; GIK01065; GIK01066; GIK01067; GIK01068; GIK01069; GIK01070; GIK01071; GIK01072; GIK01073; GIK01074; GIK01075; GIK01076; GIK01077; GIK01078; GIK01079; GIK01080; GIK01081; GIK01082; GIK01083; GIK01084; GIK01085; GIK01086; GIK01087; GIK01088; GIK01089; GIK01090; GIK01091; GIK01092; GIK01093; GIK01094; GIK01095; GIK01096; GIK01097; GIK01098; GIK01099; GIK01100; GIK01101; GIK01102; GIK01103; GIK01104; GIK01105; GIK01106; GIK01107; GIK01108; GIK01109; GIK01110; GIK01111; GIK01112; GIK01113; GIK01114; GIK01115; GIK01116; GIK01117-2; GIK01118; GIK01119; GIK01120; GIK01121; GIK01122; GIK01123; GIK01124; GIK01125; GIK01126; GIK01127; GIK01128; GIK01129; GIK01130; GIK01131; GIK01132; GIK01133; GIK01134; GIK01135; GIK01136; GIK01137; GIK01138; GIK01139; GIK01140; GIK01141; GIK01142; GIK01143; GIK01144; GIK01145; GIK01146; GIK01147; GIK01148; GIK01149; GIK01150; GIK01151; GIK01152; GIK01153; GIK01154; GIK01155; GIK01156; GIK01157; GIK01158; GIK01159; GIK01160; GIK01161; GIK01162; GIK01163; GIK01164; GIK01165; GIK01166; GIK01167; GIK01168; GIK01169; GIK01170; GIK01171; GIK01172; GIK01173; GIK01174; GIK01175; GIK01176; GIK01177; GIK01178; GIK01179; GIK01180; GIK01181; GIK01182; GIK01183; GIK01184; GIK01185; GIK01186; GIK01187; GIK01188; GIK01189; GIK01190; GIK01191; GIK01192; GIK01193; GIK01194; GIK01195; GIK01196; GIK01197; GIK01198; GIK01199; GIK01200; GIK01201; GIK01202; GIK01203; GIK01204; Gravity corer (Kiel type); IIOE - International Indian Ocean Expedition; Institute for Geosciences, Christian Albrechts University, Kiel; KAL; Kasten corer; Latitude of event; Longitude of event; M1; M1_243; M1_245 01051-B; M1_246; M1_249; M1_250; M1_251; M1_252 01057-C; M1_253; M1_254 01059-B; M1_255; M1_256; M1_257; M1_258; M1_259; M1_260; M1_261; M1_262; M1_263; M1_264; M1_265; M1_266; M1_267; M1_268; M1_269; M1_270; M1_271; M1_272; M1_273 01078-A; M1_274; M1_275; M1_276; M1_277; M1_278 01083-B; M1_279 01084-B; M1_280A; M1_280B; M1_280C 01087-B; M1_281 01088-C; M1_282; M1_283; M1_284; M1_285; M1_286 01093-B; M1_287; M1_288; M1_289 01096-B; M1_290; M1_290B; M1_290C; M1_291; M1_292 11101-2; M1_293 11102-3; M1_294; M1_295 11104-2; M1_296 11105-3; M1_297 11106-2; M1_298; M1_299; M1_300; M1_301 11110-2; M1_302 11111-2; M1_303 11112-1; M1_304 11113-2; M1_305 11114-2; M1_306; M1_307; M1_308 11117-2; M1_309; M1_310 11119-2; M1_311 11120-2; M1_312 11121-2; M1_313 11122-2; M1_314; M1_315; M1_316; M1_317; M1_318 01127-B; M1_319 01128-B; M1_320 01129-B; M1_321 01130-B; M1_322; M1_323 11132-1; M1_324; M1_324 11134-1; M1_326 01135-B; M1_327 01136-B; M1_328A 01137-B; M1_328B 01138-B; M1_329; M1_329C 01141-B; M1_330A 01142-B; M1_330B 01143-B; M1_330C 01144-B; M1_331 01145-C; M1_332 01146-B; M1_333; M1_334 01148-B; M1_335 01149-B; M1_336 01150-B; M1_337 01151-B; M1_338 01152-B; M1_339 11053-1; M1_340 01154-B; M1_341 01155-B; M1_342; M1_342A 01156-B; M1_343; M1_344; M1_345; M1_346 01161-B; M1_347A 01162-B; M1_347B 01163-B; M1_347C; M1_348 01165-A; M1_349 01166-B; M1_350; M1_351; M1_352 01173-C; M1_353 01174-B; M1_354 01175-B; M1_355A 01176-B; M1_355B 01177-C; M1_356 01178-C; M1_357 11079-2; M1_358 01180-C; M1_359 11081-2; M1_360 01182-B; M1_361 01183-B; M1_362; M1_363 11085-2; M1_364; M1_365 01187-C; M1_366 11088-1; M1_367; M1_368 01190-C; M1_369; M1_370 11092-2; M1_371; M1_372; M1_373; M1_374 01196-C; M1_375; M1_376 01198-B; M1_377 01199-G; M1_378 01200-B; M1_379; M1_380; M1_381; M1_382; Meteor (1964); Nitrogen, total; Northern Arabian Sea; Persian Gulf; Sample code/label; Sand; Size fraction 〈 0.002 mm, clay; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〉 2 mm, gravel; Size fraction 0.0063-0.002 mm, fine silt; Size fraction 0.020-0.0063 mm, medium silt; Size fraction 0.063-0.020 mm, coarse silt; SL; Water content, wet mass
    Materialart: Dataset
    Format: text/tab-separated-values, 3719 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...